Re: y=f(x)=(x²)²+2x²+3

Liste des GroupesRevenir à s math 
Sujet : Re: y=f(x)=(x²)²+2x²+3
De : r.hachel (at) *nospam* tiscali.fr (Richard Hachel)
Groupes : sci.math
Date : 06. Feb 2025, 21:30:24
Autres entêtes
Organisation : Nemoweb
Message-ID : <VksLz1xs6V0ip19khRHTzvN5p5s@jntp>
References : 1 2
User-Agent : Nemo/1.0
Le 06/02/2025 à 20:15, sobriquet a écrit :
Op 06/02/2025 om 16:42 schreef Richard Hachel:
Bonjour les amis !
 I asked for the roots of the following equation on the French forums, I only got one answer that didn't satisfy me, and the rest is just contempt and insults.
So I'm trying my luck here.
 y=f(x)=(x²)²+2x²+3
 Il y a pour moi, deux racines très simples pour cette équation, dont aucun n'est réelle.
 Can the Anglo-Saxons find these two roots?
 R.H.
 
 Actually there are four complex roots.
 https://www.wolframalpha.com/input?i=x%5E4%2B2x%5E2%2B3
 Yes, these are indeed the roots found in traditional development.
Mathematicians find four complex roots.
Personally, in this specific case, I only find two, because I think there are only two.
But I use different concepts, and a different method.
For me, the roots are x'=-i and x"=i in this particular case, and I place them on the y=0 axis, obviously, and on a simple Cartesian coordinate system.
DON'T SHOUT!
I remind you that I use a different approach that I think is more correct and in line with the very nature of i, and its precise definition, which is not only i²=-1.
R.H.

Date Sujet#  Auteur
6 Feb 25 * y=f(x)=(x²)²+2x²+321Richard Hachel
6 Feb 25 `* Re: y=f(x)=(x²)²+2x²+320sobriquet
6 Feb 25  `* Re: y=f(x)=(x²)²+2x²+319Richard Hachel
6 Feb 25   `* Re: y=f(x)=(x²)²+2x²+318sobriquet
6 Feb 25    +* Re: y=f(x)=(x²)²+2x²+34Chris M. Thomasson
6 Feb 25    i+- Re: y=f(x)=(x²)²+2x²+31FromTheRafters
7 Feb 25    i`* Re: y=f(x)=(x²)²+2x²+32Richard Hachel
7 Feb 25    i `- Re: y=f(x)=(x²)²+2x²+31FromTheRafters
6 Feb 25    `* Re: y=f(x)=(x²)²+2x²+313Richard Hachel
6 Feb 25     +- Re: y=f(x)=(x²)²+2x²+31Python
7 Feb 25     `* Re: y=f(x)=(x²)²+2x²+311sobriquet
7 Feb 25      `* Re: y=f(x)=(x²)²+2x²+310Richard Hachel
7 Feb 25       +* Re: y=f(x)=(x²)²+2x²+38Alan Mackenzie
7 Feb 25       i+* Re: y=f(x)=(x²)²+2x²+34Richard Hachel
7 Feb 25       ii`* Re: y=f(x)=(x²)²+2x²+33Python
7 Feb 25       ii +- Re: y=f(x)=(x²)²+2x²+31Richard Hachel
22 Feb 25       ii `- Re: y=f(x)=(x²)²+2x²+31Moebius
7 Feb 25       i+- Re: y=f(x)=(x²)²+2x²+31Richard Hachel
22 Feb 25       i`* Re: y=f(x)=(x²)²+2x²+32Moebius
22 Feb 25       i `- Re: y=f(x)=(x²)²+2x²+31Alan Mackenzie
7 Feb 25       `- Re: y=f(x)=(x²)²+2x²+31sobriquet

Haut de la page

Les messages affichés proviennent d'usenet.

NewsPortal