Sujet : Re: The set of necessary FISONs
De : james.g.burns (at) *nospam* att.net (Jim Burns)
Groupes : sci.mathDate : 10. Feb 2025, 20:31:26
Autres entêtes
Organisation : A noiseless patient Spider
Message-ID : <a512b980-67a5-4ed2-b5fa-e7a141b4735b@att.net>
References : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
User-Agent : Mozilla Thunderbird
On 2/10/2025 5:00 AM, WM wrote:
On 09.02.2025 18:20, Jim Burns wrote:
On 2/9/2025 5:59 AM, WM wrote:
On 2/8/2025 4:54 PM, WM wrote:
Therefore U(F(n)) = ℕ ==>
U{ } = { } = ℕ.
If U(F(n)) = ℕ, then
F(1) can be omitted without changing
the result.
If F(k) can be omitted,
then F(k+1) can be omitted too.
The set of FISONs which can be omitted
is an inductive set, i.e., all FISONs.
However,
the FISONs are inductive.
No FISON ends the FISONs.
>
Induction holds
for all natural numbers and
for all FISONs of the infinite set.
Do you accept
∀ᴺj′:∀ᴺi′:
∃ᴺk′ = max{i′,j′+1}
?
----
The set {F} of
FISONs
The set {F:after.F′} of
FISONs after F′
The set {F:non.omissible} of
FISONs which cannot be omitted.
{F:non.omissible} = {F:{F₂:after.F}={}}
The set {F:omissible} of
FISONs which can be omitted.
{F:omissible} = {F:{F₂:after.F}≠{}}
∀ᴺj′:∀ᴺi′:
∃ᴺk′ = max{i′,j′+1}
∀F′ ∈ {F}:
∃F″ ∈ {F}: F″ after F′
∀F′ ∈ {F}
{F:after.F′} /= {}
¬∃F′ ∈ {F}:
{F:after.F′} = {}
{F:omissible} = {F}
{F:non.omissible} = {}
Therefore U(F(n)) = ℕ ==>
U{ } = { } = ℕ.
Any FISON F′ such that
{F:after.F′} = {}
is in {F:non.omissible}
{F:non.omissible} = {}
∀ᴺj′:∀ᴺi′:
∃ᴺk′ = max{i′,j′+1}