Re: y=sqrt(x)+2

Liste des GroupesRevenir à s math 
Sujet : Re: y=sqrt(x)+2
De : richard (at) *nospam* damon-family.org (Richard Damon)
Groupes : sci.math
Date : 16. Feb 2025, 19:39:11
Autres entêtes
Organisation : i2pn2 (i2pn.org)
Message-ID : <065d347ad580522ff7ebab528160a05c5b2d026f@i2pn2.org>
References : 1 2 3
User-Agent : Mozilla Thunderbird
On 2/16/25 9:27 AM, Richard Hachel wrote:
Le 16/02/2025 à 02:42, Richard Damon a écrit :
>
>
4 * i^4
 Absolutely.
 J'avais toujours dit que les Richard étaient des êtres exceptionnels.
 Nota bene:
4 * i^4 = -4
No, i^4 - 1, since i^2 = -1, by definition.
The problem is that when we collapse to a simple Cartesian system, we lose the wraps, so non-integer powers become somewhat indeterminate and multiplicative. The "angle" of a number is only known to within a modulus of 2xPi (or 360 degrees) and thus the square root of any number has two values. When in just the real domain, we can limit to the principle limb, but once we allow for complex numbers, we lose that option.

 In Cartesian representation, point A, root of the equation f(x)=sqrt(x)+2, is located at A (-4,0) in standard coordinates, and at A(4i,0) in imaginary coordinates.
 R.H.

Date Sujet#  Auteur
15 Feb 25 * y=sqrt(x)+211Richard Hachel
16 Feb 25 `* Re: y=sqrt(x)+210Richard Damon
16 Feb 25  `* Re: y=sqrt(x)+29Richard Hachel
16 Feb 25   `* Re: y=sqrt(x)+28Richard Damon
16 Feb 25    `* Re: y=sqrt(x)+27Richard Hachel
16 Feb 25     `* Re: y=sqrt(x)+26Chris M. Thomasson
16 Feb 25      +* Re: y=sqrt(x)+22FromTheRafters
16 Feb 25      i`- Re: y=sqrt(x)+21Jim Burns
17 Feb 25      `* Re: y=sqrt(x)+23Richard Hachel
17 Feb 25       `* Re: y=sqrt(x)+22Richard Damon
17 Feb 25        `- Re: y=sqrt(x)+21Richard Hachel

Haut de la page

Les messages affichés proviennent d'usenet.

NewsPortal