Sujet : Re: The set of necessary FISONs
De : wolfgang.mueckenheim (at) *nospam* tha.de (WM)
Groupes : sci.mathDate : 20. Feb 2025, 10:09:28
Autres entêtes
Organisation : A noiseless patient Spider
Message-ID : <vp6rg8$2o8sd$7@dont-email.me>
References : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
User-Agent : Mozilla Thunderbird
On 19.02.2025 19:58, Jim Burns wrote:
Not proven for the set {F} of FISONs,
which is not a FISON.
1) Induction covers all elements of an infinite inductive set.
F(1) ∈ F und F(n) ∈ F ==> F(n+1) ∈ F describes the infinite inductive set F of FISONs.
2) Subtraction all FISONs {1, 2, 3, ..., n} satisfying |ℕ \ {1, 2, 3, ..., n}| = ℵo from F leaves the empty set.
These two well-established arguments prove my case:
UF = ℕ ==> Ø = ℕ.
The sum of any two natural numbers
is a natural number.
The "sum" of all the natural numbers,
for any reasonable definition of that,
will be larger than any natural number,
and not a natural number.
Like the product. Reason is the potential infinity of definable numbers.
Nevertheless: Zermelo proves the existence of an inductive *set* by induction.
Regards, WM