Re: Equation complexe

Liste des GroupesRevenir à s math 
Sujet : Re: Equation complexe
De : james.g.burns (at) *nospam* att.net (Jim Burns)
Groupes : sci.math
Date : 26. Feb 2025, 18:57:05
Autres entêtes
Organisation : A noiseless patient Spider
Message-ID : <bb3c730b-e8b7-4a24-a1e7-4a6168f8ad40@att.net>
References : 1 2 3
User-Agent : Mozilla Thunderbird
On 2/25/2025 3:07 PM, Richard Hachel wrote:
Le 25/02/2025 à 18:21, Jim Burns a écrit :
On 2/25/2025 9:23 AM, Richard Hachel wrote:

x^4=-81
>
What is x?
>
x ∈ {(+1+𝑖)⋅3/√2, (+1-𝑖)⋅3/√2, (-1+𝑖)⋅3/√2, (-1-𝑖)⋅3/√2}
>
Oui, c'est ce que dis aussi l'Intelligence artificielle,
mais sans trop expliquer pourquoi.
(x-(+1+𝑖)⋅3/√2)⋅(x-(+1-𝑖)⋅3/√2)⋅(x-(-1+𝑖)⋅3/√2)⋅(x-(-1-𝑖)⋅3/√2) =
x⁴+81
In real and in complex numbers,
if a⋅b⋅c⋅d = 0
then one of a,b,c,d is 0
otherwise, a⋅b⋅c⋅d ≠ 0
If x⁴+81 = 0
and a⋅b⋅c⋅d = x⁴+81
then one of
a = x-(+1+𝑖)⋅3/√2 = 0
b = x-(+1-𝑖)⋅3/√2 = 0
c = x-(-1+𝑖)⋅3/√2 = 0
d = x-(-1-𝑖)⋅3/√2 = 0
is true.
Hence,
x ∈ {(+1+𝑖)⋅3/√2, (+1-𝑖)⋅3/√2, (-1+𝑖)⋅3/√2, (-1-𝑖)⋅3/√2}

Personally, I propose only one root,
but it is not in conformity with what is said about "complex numbers".
Therefore, despite appearances,
your question is not "What is x?"
and it is not "what is a complex number?"
Your question is
"How can it be possible
for one person to speak to another
and be understood?"
The possibility of understanding is
greatly facilitated where
that which a speaker means by a word and
that which a listener thinks they mean by it
are in conformity.
This is not a deep philosophical point,
This is similar to noting that
phone calls with non.operating phones
are completely unsatisfactory.
A point doesn't need to be deep to be true.

I remind you that
I do not admit the definition i²=-1,
Your question assumes a certain common background,
because that's how language works.
If your question was "How do I get to the post office?"
but you didn't admit the usual definitions of
'left', 'right', and so on,
odds are you don't get to the post office,
but that would have nothing to do with
the directions you were given.

which, in itself, is not false, but so narrow
that I do not understand its semantic interest.
I think you are asking why 𝐢²=-1
and why not = something else.
Most of the answer is that
we want a 2.dimensional field which extends
the 1.dimensional field of the real numbers.
That is to say, we want 2.dimensional
addition '+' and multiplication '⋅'
which satisfy the same laws which
our 1.dimensional '+' and '⋅' satisfy:
⎛ associativity and commutativity for both,
⎜ identities 𝟎 𝟏, inverses -𝐱 𝐱⁻¹ except 𝟎⁻¹,
⎝ distributivity of '.' over '+'
We have what we want  if
we have a vector 𝐯 not on the real axis such that,
for this 2.dimensional multiplication '⋅'
𝟏⋅𝟏 = 𝟏
𝟏⋅𝐯 = 𝐯
𝐯⋅𝟏 = 𝐯
𝐯⋅𝐯 = -α𝟏-2β𝐯
such that  α > β²
Pick 𝐯 ∈ ℝ×(ℝ\{0}), β, α > β²
Define
𝐯⋅𝐯 = -α𝟏-2β𝐯
(a𝟏+b𝐯)⋅(c𝟏+d𝐯) = ac𝟏+(ad+bd)𝐯+bd(𝐯⋅𝐯)
We have what we want,
a 2.dimensional field extending ℝ
However,
suppose 𝐯 ≠ ⟨0,1⟩ and 𝐯⋅𝐯 ≠ -𝟏
Then 𝐯 ≠ 𝐢
But 𝐢 still exists,//////////////////
determined by choices 𝐯, β, α
𝐢 = ±(𝐯+β𝟏)/(α-β²)¹ᐟ² (either works)
𝐯 = ±(α-β²)¹ᐟ²𝐢-β𝟏
Each  a𝟏+b𝐯 has a corresponding a′𝟏+b′𝐢
and vice versa.
𝟏⋅𝟏 = 𝟏
𝟏⋅𝐢 = 𝐢
𝐢⋅𝟏 = 𝐢
𝐢⋅𝐢 = -𝟏
(a𝟏+b𝐢)⋅(c𝟏+d𝐢) = (ac-bd)𝟏+(ad+bd)𝐢
in the usual way.

For me, the definition must be
extended to all powers of x such that i^x=-1.
For me, the definition of 'left' must be
extended to all directions.
Wish me luck!

The other four roots being incorrect
(in the proposed system).
The proposed system do not have
2.dimensional '+' and '⋅' satisfying:
⎛ associativity and commutativity for both,
⎜ identities 𝟎 𝟏, inverses -𝐱 𝐱⁻¹ except 𝟎⁻¹,
⎝ distributivity of '.' over '+'

Date Sujet#  Auteur
25 Feb 25 * Equation complexe101Richard Hachel
25 Feb 25 +* Re: Equation complexe73Jim Burns
25 Feb 25 i`* Re: Equation complexe72Richard Hachel
25 Feb 25 i +* Re: Equation complexe3Python
25 Feb 25 i i`* Re: Equation complexe2Richard Hachel
25 Feb 25 i i `- Re: Equation complexe1Python
25 Feb 25 i +* Re: Equation complexe5guido wugi
25 Feb 25 i i`* Re: Equation complexe4Richard Hachel
25 Feb 25 i i +* Re: Equation complexe2Python
25 Feb 25 i i i`- Re: Equation complexe1Python
26 Feb 25 i i `- Re: Equation complexe1Jim Burns
26 Feb 25 i +* Re: Equation complexe21sobriquet
26 Feb 25 i i`* Re: Equation complexe20sobriquet
26 Feb 25 i i +* Re: Equation complexe16Moebius
26 Feb 25 i i i+* Re: Equation complexe12Richard Hachel
26 Feb 25 i i ii`* Re: Equation complexe11Python
26 Feb 25 i i ii +* Re: Equation complexe2Moebius
26 Feb 25 i i ii i`- Re: Equation complexe1Python
26 Feb 25 i i ii `* Re: Equation complexe8Richard Hachel
26 Feb 25 i i ii  +- Re: Equation complexe1Python
26 Feb 25 i i ii  `* Re: Equation complexe6Python
26 Feb 25 i i ii   `* Re: Equation complexe5Richard Hachel
26 Feb 25 i i ii    `* Re: Equation complexe4Python
26 Feb 25 i i ii     `* Re: Equation complexe3Python
26 Feb 25 i i ii      `* Re: Equation complexe2Richard Hachel
26 Feb 25 i i ii       `- Re: Equation complexe1Python
27 Feb 25 i i i`* Re: Equation complexe3Moebius
27 Feb 25 i i i `* Re: Equation complexe2Richard Hachel
27 Feb 25 i i i  `- Re: Equation complexe1sobriquet
26 Feb 25 i i `* Re: Equation complexe3Richard Hachel
26 Feb 25 i i  `* Re: Equation complexe2sobriquet
26 Feb 25 i i   `- Re: Equation complexe1Richard Hachel
26 Feb 25 i `* Re: Equation complexe42Jim Burns
26 Feb 25 i  `* Re: Equation complexe41Richard Hachel
26 Feb 25 i   +* Re: Equation complexe39Python
26 Feb 25 i   i`* Re: Equation complexe38Richard Hachel
26 Feb 25 i   i `* Re: Equation complexe37Python
26 Feb 25 i   i  `* Re: Equation complexe36Richard Hachel
26 Feb 25 i   i   +* Re: Equation complexe5Python
26 Feb 25 i   i   i+- Re: Equation complexe1Richard Hachel
27 Feb 25 i   i   i`* Re: Equation complexe3Moebius
27 Feb 25 i   i   i `* Re: Equation complexe2Richard Hachel
28 Feb 25 i   i   i  `- Re: Equation complexe1Chris M. Thomasson
26 Feb 25 i   i   `* Re: Equation complexe30efji
26 Feb 25 i   i    `* Re: Equation complexe29Richard Hachel
26 Feb 25 i   i     +* Re: Equation complexe2Python
27 Feb 25 i   i     i`- Re: Equation complexe1Moebius
27 Feb 25 i   i     `* Re: Equation complexe26joes
27 Feb 25 i   i      `* Re: Equation complexe25Richard Hachel
27 Feb 25 i   i       +- Re: Equation complexe1Python
27 Feb 25 i   i       +* Re: Equation complexe4Jim Burns
27 Feb 25 i   i       i`* Re: Equation complexe3Jim Burns
27 Feb 25 i   i       i `* Re: Equation complexe2Richard Hachel
28 Feb 25 i   i       i  `- Re: Equation complexe1Chris M. Thomasson
28 Feb 25 i   i       `* Re: Equation complexe19Chris M. Thomasson
28 Feb 25 i   i        +* Re: Equation complexe17Richard Hachel
28 Feb 25 i   i        i`* Re: Equation complexe16sobriquet
28 Feb 25 i   i        i `* Re: Equation complexe15Richard Hachel
28 Feb 25 i   i        i  `* Re: Equation complexe14sobriquet
28 Feb 25 i   i        i   `* Re: Equation complexe13Richard Hachel
28 Feb 25 i   i        i    `* Re: Equation complexe12sobriquet
28 Feb 25 i   i        i     +* Re: Equation complexe8Richard Hachel
28 Feb 25 i   i        i     i`* Re: Equation complexe7efji
28 Feb 25 i   i        i     i +* Re: Equation complexe2Richard Hachel
28 Feb 25 i   i        i     i i`- Re: Equation complexe1Jim Burns
28 Feb 25 i   i        i     i +* Re: Equation complexe3Moebius
28 Feb 25 i   i        i     i i`* Re: Equation complexe2Richard Hachel
28 Feb 25 i   i        i     i i `- Re: Equation complexe1Chris M. Thomasson
28 Feb 25 i   i        i     i `- Re: Equation complexe1Richard Hachel
28 Feb 25 i   i        i     `* Re: Equation complexe3Moebius
28 Feb 25 i   i        i      `* Re: Equation complexe2Chris M. Thomasson
28 Feb 25 i   i        i       `- Re: Equation complexe1Chris M. Thomasson
28 Feb 25 i   i        `- Re: Equation complexe1Chris M. Thomasson
27 Feb 25 i   `- Re: Equation complexe1Jim Burns
25 Feb 25 +- Re: Equation complexe1Chris M. Thomasson
25 Feb 25 +* Re: Equation complexe5Chris M. Thomasson
25 Feb 25 i+- Re: Equation complexe1Chris M. Thomasson
25 Feb 25 i`* Re: Equation complexe3Richard Hachel
26 Feb 25 i +- Re: Equation complexe1Chris M. Thomasson
26 Feb 25 i `- Re: Equation complexe1Chris M. Thomasson
25 Feb 25 +* Re: Equation complexe19Chris M. Thomasson
25 Feb 25 i`* Re: Equation complexe18Richard Hachel
25 Feb 25 i +* Re: Equation complexe2Chris M. Thomasson
26 Feb 25 i i`- Re: Equation complexe1Chris M. Thomasson
26 Feb 25 i `* Re: Equation complexe15Chris M. Thomasson
26 Feb 25 i  `* Re: Equation complexe14Richard Hachel
26 Feb 25 i   +* Re: Equation complexe3Chris M. Thomasson
26 Feb 25 i   i`* Re: Equation complexe2Richard Hachel
26 Feb 25 i   i `- Re: Equation complexe1Chris M. Thomasson
26 Feb 25 i   +* Re: Equation complexe3Chris M. Thomasson
26 Feb 25 i   i`* Re: Equation complexe2efji
28 Feb 25 i   i `- Re: Equation complexe1Chris M. Thomasson
26 Feb 25 i   +* Re: Equation complexe2Chris M. Thomasson
26 Feb 25 i   i`- Re: Equation complexe1Chris M. Thomasson
26 Feb 25 i   `* Re: Equation complexe5Barry Schwarz
26 Feb 25 i    +- Re: Equation complexe1Richard Hachel
26 Feb 25 i    `* Re: Equation complexe3Moebius
26 Feb 25 i     `* Re: Equation complexe2Richard Hachel
26 Feb 25 i      `- Re: Equation complexe1Python
25 Feb 25 +- Re: Equation complexe1Barry Schwarz
28 Feb 25 `- Re: Equation complexe1Chris M. Thomasson

Haut de la page

Les messages affichés proviennent d'usenet.

NewsPortal