Re: New equation

Liste des GroupesRevenir à s math 
Sujet : Re: New equation
De : james.g.burns (at) *nospam* att.net (Jim Burns)
Groupes : sci.math
Date : 01. Mar 2025, 20:11:26
Autres entêtes
Organisation : A noiseless patient Spider
Message-ID : <b3653c7b-d92d-4516-850a-ef4c0741f616@att.net>
References : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
User-Agent : Mozilla Thunderbird
On 2/28/2025 6:08 PM, Ross Finlayson wrote:
On 02/28/2025 10:46 AM, Jim Burns wrote:

Reliable inductive inferences
do not fail at being correct.
>
A reliable inductive inference
concludes, from a subset being inductive,
that that inductive subset is the whole superset.
It is a _reliable_ inductive inference
only where there is only one inductive subset:
the whole superset.
>
A failure of inductive inference would be
x and c such that  x ∈ {c} ∧ x ≠ c
>
Are you claiming you have such x and c?

There are plenty of Zeno's arguments
using induction that never get anywhere.
Let's play spot.the.supertask.
I claim that
I justify _something_ induction.like
without calling for a supertask.
You claim that
I don't deal with issues around supertasks.
As I see it,
I have dealt with those issues,
all of those issues, yours and any TBA,
by erasing supertasks from the discussion,
not even in it implicitly.
Have I failed at erasing supertasks?
Show me where.
----
I start with a broader class of
pre.inductive properties.
Some pre.inductive properties clearly
don't involve supertasks.
This should allow you to focus
your search for a supertask in a tighter area.
I define that
a property P is pre.inductive  iff,
if each set in set 𝒞 of sets has P,
then its intersection ⋂𝒞 has P
∀S∈𝒞:P(𝒞) ⇒ P(⋂𝒞)
For example,
'holding 7,11,13' is pre.inductive.
If each set of a set 𝒞 of sets holds 7,11,13
then ⋂𝒞 holds 7,11,13.
Another example is 'being inductive'.
No supertasks so far. Right?
Consider a set Z which has P
and P is pre.inductive.
The intersection ⋂𝒫ᴾ(Z) of subsets having P
has P.
The only subset of ⋂𝒫ᴾ(Z) which has P
is ⋂𝒫ᴾ(Z)
Consider (what seems to be) another property A
such that we prove the subset {i:A(i)} ⊆ ⋂𝒫ᴾ(Z) has P
There is only one subset of ⋂𝒫ᴾ(Z) which has P
{i:A(i)} = ⋂𝒫ᴾ(Z)
By definition of {i:A(i)}
∀n ∈ {i:A(i)}: A(n)
{i:A(i)} = ⋂𝒫ᴾ(Z)
∀n ∈ ⋂𝒫ᴾ(Z): A(n)
Therefore,
if property A has P, and Z has P,
then ∀n ∈ ⋂𝒫ᴾ(Z): A(n)
I don't see any supertasks.
It's your turn.
Spot the supertask.
If property P is being inductive,
and ℕ = ⋂𝒫ᴾ(Z)
then we have the familiar 'law' of induction
⎛ If A(0) ∧ ∀k∈ℕ: A(k)⇒A(k+1)
⎝ then ∀n∈ℕ: A(n)

Date Sujet#  Auteur
24 Feb 25 * New equation57Richard Hachel
24 Feb 25 `* Re: New equation56Barry Schwarz
24 Feb 25  +- Re: New equation1Richard Hachel
24 Feb 25  `* Re: New equation54Richard Hachel
24 Feb 25   +- Re: New equation1sobriquet
25 Feb 25   `* Re: New equation52Barry Schwarz
25 Feb 25    +* Re: New equation50Richard Hachel
25 Feb 25    i`* Re: New equation49Chris M. Thomasson
25 Feb 25    i `* Re: New equation48Richard Hachel
26 Feb 25    i  `* Re: New equation47Chris M. Thomasson
26 Feb 25    i   +* Re: New equation2Chris M. Thomasson
26 Feb 25    i   i`- Re: New equation1Chris M. Thomasson
26 Feb 25    i   `* Re: New equation44Richard Hachel
26 Feb 25    i    +* Re: New equation2Chris M. Thomasson
26 Feb 25    i    i`- Re: New equation1Richard Hachel
26 Feb 25    i    `* Re: New equation41sobriquet
26 Feb 25    i     `* Re: New equation40Richard Hachel
26 Feb 25    i      `* Re: New equation39sobriquet
26 Feb 25    i       `* Re: New equation38Chris M. Thomasson
27 Feb 25    i        `* Re: New equation37Ross Finlayson
27 Feb 25    i         +- Re: New equation1Chris M. Thomasson
27 Feb 25    i         `* Re: New equation35efji
28 Feb 25    i          `* Re: New equation34Ross Finlayson
28 Feb 25    i           +* Re: New equation3Chris M. Thomasson
28 Feb 25    i           i`* Re: New equation2Ross Finlayson
28 Feb 25    i           i `- Re: New equation1Chris M. Thomasson
28 Feb 25    i           +- Re: New equation1efji
28 Feb 25    i           `* Re: New equation29Jim Burns
28 Feb 25    i            `* Re: New equation28Ross Finlayson
28 Feb 25    i             `* Re: New equation27Jim Burns
1 Mar 25    i              `* Re: New equation26Ross Finlayson
1 Mar 25    i               +* Re: New equation24Jim Burns
1 Mar 25    i               i`* Re: New equation23Ross Finlayson
2 Mar 25    i               i `* Re: New equation22Jim Burns
2 Mar 25    i               i  +* Re: New equation4Richard Hachel
2 Mar 25    i               i  i`* Re: New equation3Python
2 Mar 25    i               i  i `* Re: New equation2Richard Hachel
2 Mar 25    i               i  i  `- Re: New equation1Python
2 Mar 25    i               i  `* Re: New equation17Ross Finlayson
2 Mar 25    i               i   `* Re: New equation16Jim Burns
2 Mar 25    i               i    `* Re: New equation15Richard Hachel
2 Mar 25    i               i     +* Re: New equation10Python
2 Mar 25    i               i     i+* Re: New equation2efji
2 Mar 25    i               i     ii`- Re: New equation1Chris M. Thomasson
2 Mar 25    i               i     i`* Re: New equation7Richard Hachel
2 Mar 25    i               i     i +* Re: New equation5efji
2 Mar 25    i               i     i i`* Re: New equation4Richard Hachel
2 Mar 25    i               i     i i `* Re: New equation3Python
2 Mar 25    i               i     i i  `* Re: New equation2Richard Hachel
2 Mar 25    i               i     i i   `- Re: New equation1Python
2 Mar 25    i               i     i `- Re: New equation1Python
2 Mar 25    i               i     `* Re: New equation4Jim Burns
2 Mar 25    i               i      `* Re: New equation3Chris M. Thomasson
2 Mar 25    i               i       `* Re: New equation2Jim Burns
2 Mar 25    i               i        `- Re: New equation1Chris M. Thomasson
1 Mar 25    i               `- Re: New equation1Jim Burns
26 Feb 25    `- Re: New equation1Chris M. Thomasson

Haut de la page

Les messages affichés proviennent d'usenet.

NewsPortal