Re: The truncated harmonic series diverges.

Liste des GroupesRevenir à s math 
Sujet : Re: The truncated harmonic series diverges.
De : jp (at) *nospam* python.invalid (Python)
Groupes : sci.math
Date : 05. Mar 2025, 15:26:20
Autres entêtes
Organisation : Nemoweb
Message-ID : <z-vwwap1WXEzqOoOThDZpsysp_A@jntp>
References : 1
User-Agent : Nemo/1.0
Le 05/03/2025 à 11:01, WM a écrit :
The harmonic series diverges. Kempner has shown in 1914 that all terms containing the digit 9 can be removed without changing the divergence.
Here is a simple derivation: https://www.hs-augsburg.de/~mueckenh/HI/ p. 15.
 I think that we can remove all terms containing 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 in the denominator without changing the divergence.
 Further I think we can remove every denominator containig any given number like 2025 without changing the divergence.
 Further I think that we can remove the chain of all definable numbers without changing the divergence.
 This is a proof of the huge set of dark numbers.
 Regards, WM
The sum 0 + 2 + 3 + 4 + 5 > 0
One can remove all non-null even terms, the sum stays positive : 0 + 3 + 5
0
One can remove all non-null odd terms, the sum stays positive : 0 + 2 + 4
0
All non-null natural numbers are either odd of even
"Further" one can "WM-think" that all of them can then be remove, the sum will stay positive.
You, crank Wolfgang Mückenheim, from Hochschule Augsburg, just "proved" that 0 > 0.

Date Sujet#  Auteur
5 Mar 25 * The truncated harmonic series diverges.8WM
5 Mar 25 +* Re: The truncated harmonic series diverges.2Python
6 Mar 25 i`- Re: The truncated harmonic series diverges.1WM
5 Mar 25 `* Re: The truncated harmonic series diverges.5efji
5 Mar 25  +- Re: The truncated harmonic series diverges.1WM
8 Mar 25  `* Re: The truncated harmonic series diverges.3WM
8 Mar 25   `* Re: The truncated harmonic series diverges.2Alan Mackenzie
8 Mar 25    `- Re: The truncated harmonic series diverges.1WM

Haut de la page

Les messages affichés proviennent d'usenet.

NewsPortal