Sujet : Re: The set of necessary FISONs
De : james.g.burns (at) *nospam* att.net (Jim Burns)
Groupes : sci.mathDate : 07. Mar 2025, 00:23:38
Autres entêtes
Organisation : A noiseless patient Spider
Message-ID : <ba62f59f-d600-40a8-a9a9-89e09d3fc18a@att.net>
References : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
User-Agent : Mozilla Thunderbird
On 3/6/2025 12:15 PM, WM wrote:
On 06.03.2025 14:47, Jim Burns wrote:
On 3/6/2025 4:15 AM, WM wrote:
Am 06.03.2025 um 10:06 schrieb joes:
Am Wed, 05 Mar 2025 22:05:04 +0100 schrieb WM:
Therefore iteration fails to produce
actual infinity.
>
As an element, but not as
the number of elements (=the size of the set).
>
We do NOT construct[make] sets.
We construct[know] sets.
>
Without their construction/proof
we don't know whether infinite sets exist at all.
Constructions[proofs] construct[prove.to.exist]
infinite sets,
but those constructions[proofs] aren't
endless iterations.
A proof needs to be finite (not endless).
However,
a proof doesn't need to be about something finite.
This proof is finite:
⎛ Infinity: inductive Z exists.
⎜ PowerSet: 𝒫(Z) exists.
⎜ Separation: 𝒫ⁱⁿᵈ(Z) exists.
⎝ Separation: ⋂𝒫ⁱⁿᵈ(Z) exists.
What it constructs[proves.to.exist], ⋂𝒫ⁱⁿᵈ(Z),
is infinite.
⋂𝒫ⁱⁿᵈ(Z) = {{},{{}},{{{}}},...}
⋂𝒫ⁱⁿᵈ(Z) = Z₀ [emptiest inductive]
We know Z₀ exists and is suitable for
a proof.by.induction by virtue of
claims being in a
finite sequences of finite.length claims
(each true.or.not.first.false).
That is what a proof is,
not an infinite iteration.
Um aber die Existenz "unendlicher" Mengen zu sichern, bedürfen wir noch des folgenden ... Axioms.
Those axioms ensure the existence of Z₀
but not the way that you (WM) think they ensure it.
[Zermelo: Untersuchungen über die Grundlagen
der Mengenlehre I, S. 266]
The elements are defined by induction
in order to guarantee the existence of infinite sets.