Re: The non-existence of "dark numbers"

Liste des GroupesRevenir à s math 
Sujet : Re: The non-existence of "dark numbers"
De : acm (at) *nospam* muc.de (Alan Mackenzie)
Groupes : sci.math
Date : 14. Mar 2025, 14:35:27
Autres entêtes
Organisation : muc.de e.V.
Message-ID : <vr1bav$p45$1@news.muc.de>
References : 1 2 3 4 5 6 7 8 9 10 11 12 13
User-Agent : tin/2.6.4-20241224 ("Helmsdale") (FreeBSD/14.2-RELEASE-p1 (amd64))
WM <wolfgang.mueckenheim@tha.de> wrote:
On 13.03.2025 18:53, Alan Mackenzie wrote:
WM <wolfgang.mueckenheim@tha.de> wrote:

"Definable number" has not been defined by you, except in a sociological
sense.

Then use numbers defined by induction:

|ℕ \ {1}| = ℵo.
If |ℕ \ {1, 2, 3, ..., n}| = ℵo
then |ℕ \ {1, 2, 3, ..., n+1}| = ℵo.

Here the numbers n belonging to a potentially infinite set are defined.
This set is called ℕ_def.

You're confusing yourself with the outdated notion "potentially
infinite".  The numbers n in an (?the) inductive set are N, not N_def.
Why do you denote the natural numbers by "N_def" when everybody else just
calls them "N"?

It strives for ℕ but never reaches it because .....

It doesn't "strive" for N.  You appear to be thinking about a process
taking place in time, whereby elements are "created" one per second, or
whatever.  That is a wrong and misleading way of thinking about it.  The
elements of N are defined and proven to exist.  There is no process
involved in this.

∀n ∈ ℕ_def: |ℕ \ {1, 2, 3, ..., n}| = ℵo infinitely many
numbers remain. That is the difference between dark and definable
numbers.

Rubbish!  It's just that the set difference between an infinite set and a
one of its finite subsets remains infinite.

Yes, just that is the dark part. All definable numbers belong to finite
sets.

Gibberish.  What does it mean for a number to "belong to" a finite set?
If you just mean "is an element of", then it's trivially true, since any
number n is a member of the singleton set {n}.

That doesn't shed any light on "dark" or "defi[n]able" numbers.

Du siehst den Wald vor Bäumen nicht.
[ You can't see the wood for the trees. ]

ℕ_def is a subset of ℕ. If ℕ_def had a last
element, the successor would be the first dark number.

If, if, if, ....  "N_def" remains undefined, so it is not sensible to
make assertions about it.

See above. Every inductive set (Zermelo, Peano, v. Neumann) is definable.

"Definable" remains undefined, so there's no point to answer here.  Did
Zermelo, Peano, or von Neumann use "definable" the way you're trying to
use it, at all?

But I can agree with you that there is no first "dark number".  That
is what I have proven.  There is a theorem that every non-empty
subset of the natural numbers has a least member.

That theorem is wrong in case of dark numbers.

That's a very bold claim.  Without further evidence, I think it's fair
to say you are simply mistaken here.

The potentially infinite inductive set has no last element. Therefore
its complement has no first element.

You're letting "potentially infinite" confuse you again.  The inductive
set indeed has no last element.  So "its complement" (undefined unless we
assume a base set to take the complement in), if somehow defined, is
empty.  The empty set has no first element.

When |ℕ \ {1, 2, 3, ..., n}| = ℵo, then |ℕ \ {1, 2, 3, ..., n+1}| >>>>> ℵo. How do the ℵo dark numbers get visible?

There are no such things as "dark numbers", so talking about their
visibility is not sensible.

But there are ℵo numbers following upon all numbers of ℕ_def.

N_def remains undefined, so talk about numbers following it is not
sensible.

There is no such thing as a "dark number".  It's a figment of your
imagination and faulty intuition.

Above we have an inductive definition of all elements which have
infinitely many dark successors.

"Dark number" remains undefined, except in a sociological sense.  "Dark
successor" is likewise undefined.

"Es ist sogar erlaubt, sich die neugeschaffene Zahl ω als Grenze zu
denken, welcher die Zahlen ν zustreben, wenn darunter nichts anderes
verstanden wird, als daß ω die erste ganze Zahl sein soll, welche auf
alle Zahlen ν folgt, d. h. größer zu nennen ist als jede der Zahlen ν."
E. Zermelo (ed.): "Georg Cantor – Gesammelte Abhandlungen mathematischen
und philosophischen Inhalts", Springer, Berlin (1932) p. 195.
[ "It is even permissible to think of the newly created number as a
limit to which the numbers nu tend.  If nothing else is understood,
it's held to be the first integer which follows all numbers nu, that
is, is bigger than each of the numbers nu." ]

Between the striving numbers ν and ω lie the dark numbers.

That contradicts the long excerpt from Cantor you've just cited.
According to that, omega is the _first_ number which follows the numbers
nu.  I.e., there is nothing between nu (which we can identify with N) and
omega.  There is no place for "dark numbers".

The set ℕ_def defined by induction does not include ℵo undefined numbers.

The set N doesn't include ANY undefined numbers.

 ℵo

Quite aside from the fact that there is no mathematical definition
of a "defined" number.  The "definition" you gave a few posts back
was sociological (talking about how people interacted with
eachother) not mathematical.

Mathematics is social, even when talking to oneself. Things which cannot
be represented in any mind cannot be treated.

Natural numbers can be "represented in a mind", in fact in any
mathematician's mind.

Not those which make the set ℕ empty by subtracting them
∀n ∈ ℕ_def: |ℕ \ {1, 2, 3, ..., n}| = ℵo

That nonsense has no bearing on the representability of natural numbers
in a mathematician's mind.  You're just saying that the complement in N
of a finite subset of N is of infinite size.  Yes, and.... ?

like the dark numbers can do
ℕ \ {1, 2, 3, ...} = { }.

Dark numbers remain undefined.  The above identity, more succinctly
written as N \ N = { } holds trivially, and has nothing to say about the
mythical "dark numbers".

Regards, WM

--
Alan Mackenzie (Nuremberg, Germany).


Date Sujet#  Auteur
12 Mar 25 * The existence of dark numbers proven by the thinned out harmonic series451WM
12 Mar 25 `* Re: The existence of dark numbers proven by the thinned out harmonic series450Alan Mackenzie
12 Mar 25  `* Re: The existence of dark numbers proven by the thinned out harmonic series449WM
12 Mar 25   `* The non-existence of "dark numbers" [was: The existence of dark numbers proven by the thinned out harmonic series]448Alan Mackenzie
12 Mar 25    +* Re: The non-existence of "dark numbers" [was: The existence of dark numbers proven by the thinned out harmonic series]444WM
12 Mar 25    i+* Re: The non-existence of "dark numbers"414Alan Mackenzie
12 Mar 25    ii`* Re: The non-existence of "dark numbers"413WM
12 Mar 25    ii `* Re: The non-existence of "dark numbers"412Alan Mackenzie
12 Mar 25    ii  +* Re: The non-existence of "dark numbers"6Moebius
13 Mar 25    ii  i+- Re: The non-existence of "dark numbers"1WM
13 Mar 25    ii  i`* Re: The non-existence of "dark numbers"4Alan Mackenzie
13 Mar 25    ii  i `* Re: The non-existence of "dark numbers"3Moebius
13 Mar 25    ii  i  `* Re: The non-existence of "dark numbers"2WM
13 Mar 25    ii  i   `- Re: The non-existence of "dark numbers"1joes
13 Mar 25    ii  +* Re: The non-existence of "dark numbers"401WM
13 Mar 25    ii  i+* Re: The non-existence of "dark numbers"399Alan Mackenzie
13 Mar 25    ii  ii+* Re: The non-existence of "dark numbers"397WM
13 Mar 25    ii  iii+* Re: The non-existence of "dark numbers"3joes
13 Mar 25    ii  iiii`* Re: The non-existence of "dark numbers"2WM
14 Mar 25    ii  iiii `- Re: The non-existence of "dark numbers"1joes
13 Mar 25    ii  iii`* Re: The non-existence of "dark numbers"393Alan Mackenzie
14 Mar 25    ii  iii `* Re: The non-existence of "dark numbers"392WM
14 Mar 25    ii  iii  +* Re: The non-existence of "dark numbers"7FromTheRafters
14 Mar 25    ii  iii  i`* Re: The non-existence of "dark numbers"6WM
14 Mar 25    ii  iii  i `* Re: The non-existence of "dark numbers"5FromTheRafters
14 Mar 25    ii  iii  i  `* Re: The non-existence of "dark numbers"4WM
15 Mar 25    ii  iii  i   `* Re: The non-existence of "dark numbers"3FromTheRafters
15 Mar 25    ii  iii  i    +- Re: The non-existence of "dark numbers" (thread too long, nothing in it)1Ross Finlayson
15 Mar 25    ii  iii  i    `- Re: The non-existence of "dark numbers"1WM
14 Mar 25    ii  iii  +* Re: The non-existence of "dark numbers"383Alan Mackenzie
14 Mar 25    ii  iii  i`* Re: The non-existence of "dark numbers"382WM
14 Mar 25    ii  iii  i +* Re: The non-existence of "dark numbers"380Alan Mackenzie
14 Mar 25    ii  iii  i i`* Re: The non-existence of "dark numbers"379WM
15 Mar 25    ii  iii  i i +* Re: The non-existence of "dark numbers"371Alan Mackenzie
15 Mar 25    ii  iii  i i i`* Re: The non-existence of "dark numbers"370WM
15 Mar 25    ii  iii  i i i +* Re: The non-existence of "dark numbers"4joes
15 Mar 25    ii  iii  i i i i`* Re: The non-existence of "dark numbers"3WM
15 Mar 25    ii  iii  i i i i `* Re: The non-existence of "dark numbers"2joes
15 Mar 25    ii  iii  i i i i  `- Re: The non-existence of "dark numbers"1WM
15 Mar 25    ii  iii  i i i +* Re: The non-existence of "dark numbers"362Alan Mackenzie
15 Mar 25    ii  iii  i i i i`* Re: The non-existence of "dark numbers"361WM
16 Mar 25    ii  iii  i i i i +* Re: The non-existence of "dark numbers"356Alan Mackenzie
16 Mar 25    ii  iii  i i i i i`* Re: The non-existence of "dark numbers"355WM
16 Mar 25    ii  iii  i i i i i +* Re: The non-existence of "dark numbers"268Jim Burns
16 Mar 25    ii  iii  i i i i i i`* Re: The non-existence of "dark numbers"267WM
16 Mar 25    ii  iii  i i i i i i `* Re: The non-existence of "dark numbers"266Jim Burns
16 Mar 25    ii  iii  i i i i i i  `* Re: The non-existence of "dark numbers"265WM
16 Mar 25    ii  iii  i i i i i i   `* Re: The non-existence of "dark numbers"264Jim Burns
16 Mar 25    ii  iii  i i i i i i    `* Re: The non-existence of "dark numbers"263WM
17 Mar 25    ii  iii  i i i i i i     `* Re: The non-existence of "dark numbers"262Jim Burns
17 Mar 25    ii  iii  i i i i i i      `* Re: The non-existence of "dark numbers"261WM
17 Mar 25    ii  iii  i i i i i i       `* Re: The non-existence of "dark numbers"260Jim Burns
17 Mar 25    ii  iii  i i i i i i        `* Re: The non-existence of "dark numbers"259WM
17 Mar 25    ii  iii  i i i i i i         `* Re: The non-existence of "dark numbers"258Jim Burns
18 Mar 25    ii  iii  i i i i i i          `* Re: The non-existence of "dark numbers"257WM
18 Mar 25    ii  iii  i i i i i i           `* Re: The non-existence of "dark numbers"256Jim Burns
18 Mar 25    ii  iii  i i i i i i            `* Re: The non-existence of "dark numbers"255WM
19 Mar 25    ii  iii  i i i i i i             `* Re: The non-existence of "dark numbers"254Jim Burns
19 Mar 25    ii  iii  i i i i i i              `* Re: The non-existence of "dark numbers"253WM
19 Mar 25    ii  iii  i i i i i i               `* Re: The non-existence of "dark numbers"252Jim Burns
20 Mar 25    ii  iii  i i i i i i                `* Re: The non-existence of "dark numbers"251WM
20 Mar 25    ii  iii  i i i i i i                 `* Re: The non-existence of "dark numbers"250Jim Burns
20 Mar 25    ii  iii  i i i i i i                  `* Re: The non-existence of "dark numbers"249WM
20 Mar 25    ii  iii  i i i i i i                   `* Re: The non-existence of "dark numbers"248Jim Burns
21 Mar 25    ii  iii  i i i i i i                    `* Re: The non-existence of "dark numbers"247WM
21 Mar 25    ii  iii  i i i i i i                     `* Re: The non-existence of "dark numbers"246Jim Burns
21 Mar 25    ii  iii  i i i i i i                      `* Re: The non-existence of "dark numbers"245WM
21 Mar 25    ii  iii  i i i i i i                       +* The reality of sets, on a scale of 1 to 10 [Was: The non-existence of "dark numbers"]183Alan Mackenzie
21 Mar 25    ii  iii  i i i i i i                       i+* Re: The reality of sets, on a scale of 1 to 10 [Was: The non-existence of "dark numbers"]40Moebius
21 Mar 25    ii  iii  i i i i i i                       ii+* Re: The reality of sets, on a scale of 1 to 10 [Was: The non-existence of "dark numbers"]37Moebius
21 Mar 25    ii  iii  i i i i i i                       iii+* Re: The reality of sets, on a scale of 1 to 10 [Was: The non-existence of "dark numbers"]2Moebius
21 Mar 25    ii  iii  i i i i i i                       iiii`- Re: The reality of sets, on a scale of 1 to 10 [Was: The non-existence of "dark numbers"]1Moebius
21 Mar 25    ii  iii  i i i i i i                       iii`* Re: The reality of sets, on a scale of 1 to 1034Alan Mackenzie
21 Mar 25    ii  iii  i i i i i i                       iii +* Re: The reality of sets, on a scale of 1 to 1032Moebius
22 Mar 25    ii  iii  i i i i i i                       iii i+- Re: The reality of sets, on a scale of 1 to 101Ross Finlayson
22 Mar 25    ii  iii  i i i i i i                       iii i+* Re: The reality of sets, on a scale of 1 to 1029Ralf Bader
22 Mar 25    ii  iii  i i i i i i                       iii ii`* Re: The reality of sets, on a scale of 1 to 1028Moebius
22 Mar 25    ii  iii  i i i i i i                       iii ii +* Re: The reality of sets, on a scale of 1 to 102Moebius
22 Mar 25    ii  iii  i i i i i i                       iii ii i`- Re: The reality of sets, on a scale of 1 to 101Moebius
23 Mar 25    ii  iii  i i i i i i                       iii ii `* Re: The reality of sets, on a scale of 1 to 1025Ross Finlayson
23 Mar 25    ii  iii  i i i i i i                       iii ii  `* Re: The reality of sets, on a scale of 1 to 1024Jim Burns
23 Mar 25    ii  iii  i i i i i i                       iii ii   `* Re: The reality of sets, on a scale of 1 to 10 (theory of theories)23Ross Finlayson
24 Mar 25    ii  iii  i i i i i i                       iii ii    +* Re: The reality of sets, on a scale of 1 to 10 (theory of theories)19Chris M. Thomasson
24 Mar 25    ii  iii  i i i i i i                       iii ii    i`* Re: The reality of sets, on a scale of 1 to 10 (theory of theories)18Jim Burns
24 Mar 25    ii  iii  i i i i i i                       iii ii    i +* Re: The reality of sets, on a scale of 1 to 10 (theory of theories)11Ross Finlayson
24 Mar 25    ii  iii  i i i i i i                       iii ii    i i`* Re: The reality of sets, on a scale of 1 to 10 (theory of theories)10Jim Burns
25 Mar 25    ii  iii  i i i i i i                       iii ii    i i `* Re: The reality of sets, on a scale of 1 to 10 (theory of theories)9Ross Finlayson
25 Mar 25    ii  iii  i i i i i i                       iii ii    i i  +* Re: The reality of sets, on a scale of 1 to 10 (theory of theories)3Jim Burns
25 Mar 25    ii  iii  i i i i i i                       iii ii    i i  i`* Re: The reality of sets, on a scale of 1 to 10 (theory of theories)2Ross Finlayson
25 Mar 25    ii  iii  i i i i i i                       iii ii    i i  i `- Re: The reality of sets, on a scale of 1 to 10 (theory of theories)1Jim Burns
25 Mar 25    ii  iii  i i i i i i                       iii ii    i i  `* Re: The reality of sets, on a scale of 1 to 10 (theory of theories)5Jim Burns
25 Mar 25    ii  iii  i i i i i i                       iii ii    i i   `* Re: The reality of sets, on a scale of 1 to 10 (theory of theories)4Ross Finlayson
25 Mar 25    ii  iii  i i i i i i                       iii ii    i i    `* Re: The reality of sets, on a scale of 1 to 10 (theory of theories)3Jim Burns
25 Mar 25    ii  iii  i i i i i i                       iii ii    i i     `* Re: The reality of sets, on a scale of 1 to 10 (theory of theories)2Ross Finlayson
25 Mar 25    ii  iii  i i i i i i                       iii ii    i i      `- Re: The reality of sets, on a scale of 1 to 10 (theory of theories)1Jim Burns
26 Mar 25    ii  iii  i i i i i i                       iii ii    i `* Re: The reality of sets, on a scale of 1 to 10 (theory of theories)6Chris M. Thomasson
27 Mar 25    ii  iii  i i i i i i                       iii ii    i  `* Re: The reality of sets, on a scale of 1 to 10 (theory of theories)5Jim Burns
27 Mar 25    ii  iii  i i i i i i                       iii ii    i   `* Re: The reality of sets, on a scale of 1 to 10 (theory of theories)4FromTheRafters
27 Mar 25    ii  iii  i i i i i i                       iii ii    i    +- Re: The reality of sets, on a scale of 1 to 10 (theory of theories)1Jim Burns
27 Mar 25    ii  iii  i i i i i i                       iii ii    i    `* Re: The reality of sets, on a scale of 1 to 10 (theory of theories)2Ross Finlayson
27 Mar 25    ii  iii  i i i i i i                       iii ii    i     `- Re: The reality of sets, on a scale of 1 to 10 (theory of theories)1Ross Finlayson
24 Mar 25    ii  iii  i i i i i i                       iii ii    `* Re: The reality of sets, on a scale of 1 to 10 (theory of theories)3Jim Burns
22 Mar 25    ii  iii  i i i i i i                       iii i`- Re: The reality of sets, on a scale of 1 to 101WM
22 Mar 25    ii  iii  i i i i i i                       iii `- Re: The reality of sets, on a scale of 1 to 101WM
22 Mar 25    ii  iii  i i i i i i                       ii`* Re: The reality of sets, on a scale of 1 to 10 [Was: The non-existence of "dark numbers"]2WM
22 Mar 25    ii  iii  i i i i i i                       i`* Re: The reality of sets, on a scale of 1 to 10 [Was: The non-existence of "dark numbers"]142WM
21 Mar 25    ii  iii  i i i i i i                       +* Re: The non-existence of "dark numbers"3FromTheRafters
22 Mar 25    ii  iii  i i i i i i                       `* Re: The non-existence of "dark numbers"58Jim Burns
16 Mar 25    ii  iii  i i i i i +* Re: The non-existence of "dark numbers"85Alan Mackenzie
16 Mar 25    ii  iii  i i i i i `- Re: The non-existence of "dark numbers"1joes
16 Mar 25    ii  iii  i i i i `* Re: The non-existence of "dark numbers"4joes
15 Mar 25    ii  iii  i i i `* Re: The non-existence of "dark numbers"3Chris M. Thomasson
15 Mar 25    ii  iii  i i `* Re: The non-existence of "dark numbers"7joes
14 Mar 25    ii  iii  i `- Re: The non-existence of "dark numbers"1joes
14 Mar 25    ii  iii  `- Re: The non-existence of "dark numbers"1joes
14 Mar 25    ii  ii`- Re: The non-existence of "dark numbers"1Chris M. Thomasson
13 Mar 25    ii  i`- Re: The non-existence of "dark numbers"1joes
13 Mar 25    ii  `* Re: The non-existence of "dark numbers"4Ben Bacarisse
12 Mar 25    i`* Re: The non-existence of "dark numbers" [was: The existence of dark numbers proven by the thinned out harmonic series]29Jim Burns
12 Mar 25    +* Re: The non-existence of "dark numbers" [was: The existence of dark numbers proven by the thinned out harmonic series]2FromTheRafters
12 Mar 25    `- Re: The non-existence of "dark numbers" [was: The existence of dark numbers proven by the thinned out harmonic series]1Jim Burns

Haut de la page

Les messages affichés proviennent d'usenet.

NewsPortal