Sujet : Re: The non-existence of "dark numbers" [was: The existence of dark numbers proven by the thinned out harmonic series]
De : james.g.burns (at) *nospam* att.net (Jim Burns)
Groupes : sci.mathDate : 14. Mar 2025, 18:29:56
Autres entêtes
Organisation : A noiseless patient Spider
Message-ID : <73359d09-bf4b-4970-bf4c-133bf2cc6218@att.net>
References : 1 2 3 4 5 6 7 8 9 10 11
User-Agent : Mozilla Thunderbird
On 3/14/2025 10:33 AM, WM wrote:
On 13.03.2025 20:41, Jim Burns wrote:
On 3/13/2025 6:45 AM, WM wrote:
On 13.03.2025 01:43, Jim Burns wrote:
A single (lossless) exchange cannot delete an O
Finitely.many (lossless) exchanges cannot delete an O
>
Infinitely.many (lossless) exchanges can delete an O
>
No.
>
Your "No" responds to infiniteᵂᴹ,
but I wrote infiniteⁿᵒᵗᐧᵂᴹ.
>
My "No" responds to every finity and every infinity.
It doesn't respond to this definition:
⎛ a finiteⁿᵒᵗᐧᵂᴹ set A has
⎜ fuller.by.one sets Aᣕᵃ which are larger.
⎜ finiteⁿᵒᵗᐧᵂᴹ A: #A < #Aᣕᵃ
⎜ and
⎜ an infiniteⁿᵒᵗᐧᵂᴹ set Y has
⎜ fuller.by.one sets Yᣕʸ which are not larger.
⎝ infiniteⁿᵒᵗᐧᵂᴹ Y: #Y = #Yᣕʸ
⎛ ¬(#A > #Aᣕᵃ)
⎝ ¬(#Y > #Yᣕʸ)
lemma:
⎛ A is smaller than B iff
⎜ fuller.by.one Aᣕᵃ is smaller than fuller.by.one Bᣕᵇ
⎝ #A < #B ⇔ #Aᣕᵃ < #Bᣕᵇ
If you deny the definition,
then you refuse to hear what I'm saying,
you choose to hear infiniteᵂᴹ not infiniteⁿᵒᵗᐧᵂᴹ
If you deny the lemma
#A < #B ⇔ #Aᣕᵃ < #Bᣕᵇ
I have a proof to show you.
----
#A < #B ⇔ #Aᣕᵃ < #Bᣕᵇ
Let B = Aᣕᵃ
#A < #Aᣕᵃ ⇔ #Aᣕᵃ < #Aᣕᵃᵇ
If A is finiteⁿᵒᵗᐧᵂᴹ
then Aᣕᵃ is finiteⁿᵒᵗᐧᵂᴹ and larger.
There is no largest finiteⁿᵒᵗᐧᵂᴹ set.
By similar reasoning, for infiniteⁿᵒᵗᐧᵂᴹ Y and
emptier.by.one Yᐠʸ and emptier.by.two Yᐠʸᶻ
#Y = #Yᐠʸ ⇔ #Yᐠʸ = #Yᐠʸᶻ
If Y is infiniteⁿᵒᵗᐧᵂᴹ,
removing singles doesn't shrink Y.
What you must deny in order to say "No" is
#A < #B ⇔ #Aᣕᵃ < #Bᣕᵇ
----
{#C:#C<#Cᣕᶜ} is the set of finiteⁿᵒᵗᐧᵂᴹ set.sizes.
{#C:#C<#Cᣕᶜ} = ℕⁿᵒᵗᐧᵂᴹ
For each finite set A, #A < #Aᣕᵃ
set.size #A is in {#C:#C<#Cᣕᶜ}
No set.size in {#C:#C<#Cᣕᶜ} is #{#C:#C<#Cᣕᶜ}
Otherwise,
there would be subsets of {#C:#C<#Cᣕᶜ} which
were larger than {#C:#C<#Cᣕᶜ}
(There is no negative cardinality.)
¬(#{#C:#C<#Cᣕᶜ} < #{#C:#C<#Cᣕᶜ}ᣕᴮᵒᵇ)
#{#C:#C<#Cᣕᶜ} = #{#C:#C<#Cᣕᶜ}ᣕᴮᵒᵇ
This is why
sufficiently.many size.preserving swaps
can erase Bob:
erasing Bob preserves the size of {#C:#C<#Cᣕᶜ}ᣕᴮᵒᵇ
Logic never ceases to be valid.
Lossless exchange is lossless.
#A < #B ⇔ #Aᣕᵃ < #Bᣕᵇ
Date | Sujet | # | | Auteur |
12 Mar 25 | The existence of dark numbers proven by the thinned out harmonic series | 451 | | WM |
12 Mar 25 |  Re: The existence of dark numbers proven by the thinned out harmonic series | 450 | | Alan Mackenzie |
12 Mar 25 |   Re: The existence of dark numbers proven by the thinned out harmonic series | 449 | | WM |
12 Mar 25 |    The non-existence of "dark numbers" [was: The existence of dark numbers proven by the thinned out harmonic series] | 448 | | Alan Mackenzie |
12 Mar 25 |     Re: The non-existence of "dark numbers" [was: The existence of dark numbers proven by the thinned out harmonic series] | 444 | | WM |
12 Mar 25 |      Re: The non-existence of "dark numbers" | 414 | | Alan Mackenzie |
12 Mar 25 |       Re: The non-existence of "dark numbers" | 413 | | WM |
12 Mar 25 |        Re: The non-existence of "dark numbers" | 412 | | Alan Mackenzie |
12 Mar 25 |         Re: The non-existence of "dark numbers" | 6 | | Moebius |
13 Mar 25 |          Re: The non-existence of "dark numbers" | 1 | | WM |
13 Mar 25 |          Re: The non-existence of "dark numbers" | 4 | | Alan Mackenzie |
13 Mar 25 |           Re: The non-existence of "dark numbers" | 3 | | Moebius |
13 Mar 25 |            Re: The non-existence of "dark numbers" | 2 | | WM |
13 Mar 25 |             Re: The non-existence of "dark numbers" | 1 | | joes |
13 Mar 25 |         Re: The non-existence of "dark numbers" | 401 | | WM |
13 Mar 25 |          Re: The non-existence of "dark numbers" | 399 | | Alan Mackenzie |
13 Mar 25 |           Re: The non-existence of "dark numbers" | 397 | | WM |
13 Mar 25 |            Re: The non-existence of "dark numbers" | 3 | | joes |
13 Mar 25 |             Re: The non-existence of "dark numbers" | 2 | | WM |
14 Mar 25 |              Re: The non-existence of "dark numbers" | 1 | | joes |
13 Mar 25 |            Re: The non-existence of "dark numbers" | 393 | | Alan Mackenzie |
14 Mar 25 |             Re: The non-existence of "dark numbers" | 392 | | WM |
14 Mar 25 |              Re: The non-existence of "dark numbers" | 7 | | FromTheRafters |
14 Mar 25 |               Re: The non-existence of "dark numbers" | 6 | | WM |
14 Mar 25 |                Re: The non-existence of "dark numbers" | 5 | | FromTheRafters |
14 Mar 25 |                 Re: The non-existence of "dark numbers" | 4 | | WM |
15 Mar 25 |                  Re: The non-existence of "dark numbers" | 3 | | FromTheRafters |
15 Mar 25 |                   Re: The non-existence of "dark numbers" (thread too long, nothing in it) | 1 | | Ross Finlayson |
15 Mar 25 |                   Re: The non-existence of "dark numbers" | 1 | | WM |
14 Mar 25 |              Re: The non-existence of "dark numbers" | 383 | | Alan Mackenzie |
14 Mar 25 |               Re: The non-existence of "dark numbers" | 382 | | WM |
14 Mar 25 |                Re: The non-existence of "dark numbers" | 380 | | Alan Mackenzie |
14 Mar 25 |                 Re: The non-existence of "dark numbers" | 379 | | WM |
15 Mar 25 |                  Re: The non-existence of "dark numbers" | 371 | | Alan Mackenzie |
15 Mar 25 |                   Re: The non-existence of "dark numbers" | 370 | | WM |
15 Mar 25 |                    Re: The non-existence of "dark numbers" | 4 | | joes |
15 Mar 25 |                     Re: The non-existence of "dark numbers" | 3 | | WM |
15 Mar 25 |                      Re: The non-existence of "dark numbers" | 2 | | joes |
15 Mar 25 |                       Re: The non-existence of "dark numbers" | 1 | | WM |
15 Mar 25 |                    Re: The non-existence of "dark numbers" | 362 | | Alan Mackenzie |
15 Mar 25 |                     Re: The non-existence of "dark numbers" | 361 | | WM |
16 Mar 25 |                      Re: The non-existence of "dark numbers" | 356 | | Alan Mackenzie |
16 Mar 25 |                       Re: The non-existence of "dark numbers" | 355 | | WM |
16 Mar 25 |                        Re: The non-existence of "dark numbers" | 268 | | Jim Burns |
16 Mar 25 |                         Re: The non-existence of "dark numbers" | 267 | | WM |
16 Mar 25 |                          Re: The non-existence of "dark numbers" | 266 | | Jim Burns |
16 Mar 25 |                           Re: The non-existence of "dark numbers" | 265 | | WM |
16 Mar 25 |                            Re: The non-existence of "dark numbers" | 264 | | Jim Burns |
16 Mar 25 |                             Re: The non-existence of "dark numbers" | 263 | | WM |
17 Mar 25 |                              Re: The non-existence of "dark numbers" | 262 | | Jim Burns |
17 Mar 25 |                               Re: The non-existence of "dark numbers" | 261 | | WM |
17 Mar 25 |                                Re: The non-existence of "dark numbers" | 260 | | Jim Burns |
17 Mar 25 |                                 Re: The non-existence of "dark numbers" | 259 | | WM |
17 Mar 25 |                                  Re: The non-existence of "dark numbers" | 258 | | Jim Burns |
18 Mar 25 |                                   Re: The non-existence of "dark numbers" | 257 | | WM |
18 Mar 25 |                                    Re: The non-existence of "dark numbers" | 256 | | Jim Burns |
18 Mar 25 |                                     Re: The non-existence of "dark numbers" | 255 | | WM |
19 Mar 25 |                                      Re: The non-existence of "dark numbers" | 254 | | Jim Burns |
19 Mar 25 |                                       Re: The non-existence of "dark numbers" | 253 | | WM |
19 Mar 25 |                                        Re: The non-existence of "dark numbers" | 252 | | Jim Burns |
20 Mar 25 |                                         Re: The non-existence of "dark numbers" | 251 | | WM |
20 Mar 25 |                                          Re: The non-existence of "dark numbers" | 250 | | Jim Burns |
20 Mar 25 |                                           Re: The non-existence of "dark numbers" | 249 | | WM |
20 Mar 25 |                                            Re: The non-existence of "dark numbers" | 248 | | Jim Burns |
21 Mar 25 |                                             Re: The non-existence of "dark numbers" | 247 | | WM |
21 Mar 25 |                                              Re: The non-existence of "dark numbers" | 246 | | Jim Burns |
21 Mar 25 |                                               Re: The non-existence of "dark numbers" | 245 | | WM |
21 Mar 25 |                                                The reality of sets, on a scale of 1 to 10 [Was: The non-existence of "dark numbers"] | 183 | | Alan Mackenzie |
21 Mar 25 |                                                 Re: The reality of sets, on a scale of 1 to 10 [Was: The non-existence of "dark numbers"] | 40 | | Moebius |
21 Mar 25 |                                                  Re: The reality of sets, on a scale of 1 to 10 [Was: The non-existence of "dark numbers"] | 37 | | Moebius |
21 Mar 25 |                                                   Re: The reality of sets, on a scale of 1 to 10 [Was: The non-existence of "dark numbers"] | 2 | | Moebius |
21 Mar 25 |                                                    Re: The reality of sets, on a scale of 1 to 10 [Was: The non-existence of "dark numbers"] | 1 | | Moebius |
21 Mar 25 |                                                   Re: The reality of sets, on a scale of 1 to 10 | 34 | | Alan Mackenzie |
21 Mar 25 |                                                    Re: The reality of sets, on a scale of 1 to 10 | 32 | | Moebius |
22 Mar 25 |                                                     Re: The reality of sets, on a scale of 1 to 10 | 1 | | Ross Finlayson |
22 Mar 25 |                                                     Re: The reality of sets, on a scale of 1 to 10 | 29 | | Ralf Bader |
22 Mar 25 |                                                      Re: The reality of sets, on a scale of 1 to 10 | 28 | | Moebius |
22 Mar 25 |                                                       Re: The reality of sets, on a scale of 1 to 10 | 2 | | Moebius |
22 Mar 25 |                                                        Re: The reality of sets, on a scale of 1 to 10 | 1 | | Moebius |
23 Mar 25 |                                                       Re: The reality of sets, on a scale of 1 to 10 | 25 | | Ross Finlayson |
23 Mar 25 |                                                        Re: The reality of sets, on a scale of 1 to 10 | 24 | | Jim Burns |
23 Mar 25 |                                                         Re: The reality of sets, on a scale of 1 to 10 (theory of theories) | 23 | | Ross Finlayson |
24 Mar 25 |                                                          Re: The reality of sets, on a scale of 1 to 10 (theory of theories) | 19 | | Chris M. Thomasson |
24 Mar 25 |                                                           Re: The reality of sets, on a scale of 1 to 10 (theory of theories) | 18 | | Jim Burns |
24 Mar 25 |                                                            Re: The reality of sets, on a scale of 1 to 10 (theory of theories) | 11 | | Ross Finlayson |
24 Mar 25 |                                                             Re: The reality of sets, on a scale of 1 to 10 (theory of theories) | 10 | | Jim Burns |
25 Mar 25 |                                                              Re: The reality of sets, on a scale of 1 to 10 (theory of theories) | 9 | | Ross Finlayson |
25 Mar 25 |                                                               Re: The reality of sets, on a scale of 1 to 10 (theory of theories) | 3 | | Jim Burns |
25 Mar 25 |                                                                Re: The reality of sets, on a scale of 1 to 10 (theory of theories) | 2 | | Ross Finlayson |
25 Mar 25 |                                                                 Re: The reality of sets, on a scale of 1 to 10 (theory of theories) | 1 | | Jim Burns |
25 Mar 25 |                                                               Re: The reality of sets, on a scale of 1 to 10 (theory of theories) | 5 | | Jim Burns |
25 Mar 25 |                                                                Re: The reality of sets, on a scale of 1 to 10 (theory of theories) | 4 | | Ross Finlayson |
25 Mar 25 |                                                                 Re: The reality of sets, on a scale of 1 to 10 (theory of theories) | 3 | | Jim Burns |
25 Mar 25 |                                                                  Re: The reality of sets, on a scale of 1 to 10 (theory of theories) | 2 | | Ross Finlayson |
25 Mar 25 |                                                                   Re: The reality of sets, on a scale of 1 to 10 (theory of theories) | 1 | | Jim Burns |
26 Mar 25 |                                                            Re: The reality of sets, on a scale of 1 to 10 (theory of theories) | 6 | | Chris M. Thomasson |
27 Mar 25 |                                                             Re: The reality of sets, on a scale of 1 to 10 (theory of theories) | 5 | | Jim Burns |
27 Mar 25 |                                                              Re: The reality of sets, on a scale of 1 to 10 (theory of theories) | 4 | | FromTheRafters |
27 Mar 25 |                                                               Re: The reality of sets, on a scale of 1 to 10 (theory of theories) | 1 | | Jim Burns |
27 Mar 25 |                                                               Re: The reality of sets, on a scale of 1 to 10 (theory of theories) | 2 | | Ross Finlayson |
27 Mar 25 |                                                                Re: The reality of sets, on a scale of 1 to 10 (theory of theories) | 1 | | Ross Finlayson |
24 Mar 25 |                                                          Re: The reality of sets, on a scale of 1 to 10 (theory of theories) | 3 | | Jim Burns |
22 Mar 25 |                                                     Re: The reality of sets, on a scale of 1 to 10 | 1 | | WM |
22 Mar 25 |                                                    Re: The reality of sets, on a scale of 1 to 10 | 1 | | WM |
22 Mar 25 |                                                  Re: The reality of sets, on a scale of 1 to 10 [Was: The non-existence of "dark numbers"] | 2 | | WM |
22 Mar 25 |                                                 Re: The reality of sets, on a scale of 1 to 10 [Was: The non-existence of "dark numbers"] | 142 | | WM |
21 Mar 25 |                                                Re: The non-existence of "dark numbers" | 3 | | FromTheRafters |
22 Mar 25 |                                                Re: The non-existence of "dark numbers" | 58 | | Jim Burns |
16 Mar 25 |                        Re: The non-existence of "dark numbers" | 85 | | Alan Mackenzie |
16 Mar 25 |                        Re: The non-existence of "dark numbers" | 1 | | joes |
16 Mar 25 |                      Re: The non-existence of "dark numbers" | 4 | | joes |
15 Mar 25 |                    Re: The non-existence of "dark numbers" | 3 | | Chris M. Thomasson |
15 Mar 25 |                  Re: The non-existence of "dark numbers" | 7 | | joes |
14 Mar 25 |                Re: The non-existence of "dark numbers" | 1 | | joes |
14 Mar 25 |              Re: The non-existence of "dark numbers" | 1 | | joes |
14 Mar 25 |           Re: The non-existence of "dark numbers" | 1 | | Chris M. Thomasson |
13 Mar 25 |          Re: The non-existence of "dark numbers" | 1 | | joes |
13 Mar 25 |         Re: The non-existence of "dark numbers" | 4 | | Ben Bacarisse |
12 Mar 25 |      Re: The non-existence of "dark numbers" [was: The existence of dark numbers proven by the thinned out harmonic series] | 29 | | Jim Burns |
12 Mar 25 |     Re: The non-existence of "dark numbers" [was: The existence of dark numbers proven by the thinned out harmonic series] | 2 | | FromTheRafters |
12 Mar 25 |     Re: The non-existence of "dark numbers" [was: The existence of dark numbers proven by the thinned out harmonic series] | 1 | | Jim Burns |