Re: Complex roots

Liste des GroupesRevenir à s math 
Sujet : Re: Complex roots
De : jp (at) *nospam* python.invalid (Python)
Groupes : sci.math
Date : 20. Mar 2025, 18:10:12
Autres entêtes
Organisation : Nemoweb
Message-ID : <z2owdnvkZq04e_Pp_RY64gdncZ8@jntp>
References : 1
User-Agent : Nemo/1.0
Le 20/03/2025 à 17:45, Richard Hachel a écrit :
The goal is to completely do without Argand geometry (which is strictly useless in Cartesian planes). Here, we have a curve f(x), which gives us a real root x=1,
since f(x)=(x-1)²(x²+4), but also two complex roots, which are no longer systematically x'=2i and x"=-2i.
 This is very strange and worthy of interest.
 Thus, f'(x)=x²+4 does not have the same complex roots as f(x)=(x-1)²(x²+4).
 This clearly confuses all mathematicians, and even makes them laugh.
 And yet it's true.
 Just as real roots are unalterable (I can multiply by as many roots as I want, I would always have my first roots continued in the equation), this is no longer true for complex roots. This is very strange.
 <http://nemoweb.net/jntp?MgzF4TKP_46j3u1MBdnuxy16Yhg@jntp/Data.Media:1>
  <https://www.nemoweb.net/?DataID=MgzF4TKP_46j3u1MBdnuxy16Yhg@jntp>
 x'=2i
 Yes, but...  x"=-0.38829i and not x"=-2i
 R.H.
Nothings strange. Garbage, confusions and contradictions in, garbage, confusions and contradictions out.

Date Sujet#  Auteur
20 Mar 25 * Complex roots7Richard Hachel
20 Mar 25 +- Re: Complex roots1Python
20 Mar 25 +* Re: Complex roots4efji
20 Mar 25 i`* Re: Complex roots3Python
20 Mar 25 i +- Re: Complex roots1Moebius
20 Mar 25 i `- Re: Complex roots1Richard Hachel
20 Mar 25 `- Re: Complex roots1Chris M. Thomasson

Haut de la page

Les messages affichés proviennent d'usenet.

NewsPortal