Re: The reality of sets, on a scale of 1 to 10 [Was: The non-existence of "dark numbers"]

Liste des GroupesRevenir à s math 
Sujet : Re: The reality of sets, on a scale of 1 to 10 [Was: The non-existence of "dark numbers"]
De : noreply (at) *nospam* example.org (joes)
Groupes : sci.math
Date : 13. Apr 2025, 09:20:10
Autres entêtes
Organisation : i2pn2 (i2pn.org)
Message-ID : <a1fc0662e259a9055d2882b97c05de145ecc2b5d@i2pn2.org>
References : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
User-Agent : Pan/0.145 (Duplicitous mercenary valetism; d7e168a git.gnome.org/pan2)
Am Thu, 03 Apr 2025 22:17:33 +0200 schrieb WM:
On 03.04.2025 16:40, Alan Mackenzie wrote:
WM <wolfgang.mueckenheim@tha.de> wrote:
On 28.03.2025 17:32, Alan Mackenzie wrote:
 
So tell us, O wise one, how many elements are there in {1, 3, 5, 7,
9, ...}?  And how many elements in {0, 4, 8, 12, 16, ...}?  Which of
these two numbers is bigger, and why?
|ℕ|/2 > |ℕ|/4.
Start out with a set of natural numbers.  Multiply each member by four,
giving a new set.  You'd have us believe that the new set contains
fewer elements than the original set.
Fact. Ifff the natural numbers are an actually infinite set, then its
elements are invariable and fixed.
How else could it be.

By multiplication no larger numbers
can be created. What you have in mind is a potentially infinite set.
 
Let me explain in detail:
Cantor created the sequence of the ordinal numbers by means of his first
and second generation principle:
0, 1, 2, 3, ..., ω, ω+1, ω+2, ω+3, ..., ω*2, ω*2+1, ω*2+2,
ω*2+3, ..., ω*3, ... .
This sequence, except its very first terms, has no relevance for
classical mathematics. But it is important for set theory that in actual
infinity nothing fits between ℕ and ω. Likewise before ω*2 and ω*3
there is no empty space.
What do „fits” and „space” mean?

According to Hilbert we can simply count beyond the
infinite by a quite natural and uniquely determined, consistent
continuation of the ordinary counting in the finite.  But we would
proceed even faster, when instead of counting, we doubled the numbers.
This leads to the central issue:  Multiply every element of the set ℕ by
2
{1, 2, 3, ...}*2 = {2, 4, 6, ...} .
 
The density of the natural numbers on the real axis is greater than the
density of the even natural numbers.
In which sense? There are infinitely many of either.

Therefore the doubled natural numbers cover twice as many space than
before.
Again, how? How much?

What is the result of
doubling? Either all doubled numbers are natural numbers, then not all
natural numbers have been doubled.
Why? Every even number has a natural half its value.

Natural numbers not available before
have been created. This is possible only based on potential infinity. Or
all natural numbers have been doubled, then the result stretches
farther, namely beyond all natural numbers.
No, there is no natural number whose double is larger than ω.
Your mistake is to think of infinity as a really big number of the same
kind as naturals, but it is rather more like a type or a special point.

It is more suggestive to double the set ℕ U {ω} = {1, 2, 3, ..., ω}
with the result
{1, 2, 3, ..., ω}*2 = {2, 4, 6, ..., ω*2} .
What elements fall between ω and ω*2?
Where is ω?

What size has the interval between 2ℕ and ω*2?
What is the interval between two sets?

The natural answer is (0, ω]*2 = (0, ω*2] with ω or ω+1
amidst.
No, that would be two consecutive infinities. You can do that, but not
with f(x)=2x and not without violating the order.

The number of doubled natural numbers is precisely |ℕ|. But half
of the doubled numbers are no longer natural numbers; they surpass ω. If
all natural numbers including all even numbers are doubled and if
doubling increases the value for all natural numbers because n < 2n,
then not all doubled even numbers fit below ω.
Yes they do. The product of two naturals is also a natural.

Natural numbers greater
than all even natural numbers however are not possible.
 
Every other result would violate symmetry and beauty of mathematics, for
instance the claim that the result would be ℕ U {ω, ω*2}. All numbers
between ω and ω*2, which are precisely as many as in ℕ between 0 and ω,
would not be in the result? Every structure must be doubled!
The „structure” (order type) of N is ω and not ω*2.

Like the
interval [1, 5] of lengths 4 by doubling gets [1, 5]*2 = [2, 10] of
length 8, the interval (0, ω]*2 gets (0, ω*2] with ω*2 = ω + ω =/= ω
where the whole interval between 0 and ω*2 is evenly filled with even
numbers like the whole interval between 0 and ω is evenly filled with
natural numbers before multiplication. On the ordinal axis the numbers
0, ω, ω*2, ω*3, ... have same distances because same number of ordinals
lie between them.
How do you define subtraction for ordinals?

This means that contrary to the collection of visible
natural numbers ℕ_def which only are relevant in classical mathematics
the whole set ℕ is not closed under multiplication. Some natural numbers
can become transfinite by multiplication.
No, the union of the set called N and those numbers you have added is not
closed. That’s your problem, not that of mathematics.

This resembles the displacement of the interval (0, 1] by one point to
the left-hand side such that the interval [0, 1) is covered.
What is „one point”? Can you give an explicit function?

--
Am Sat, 20 Jul 2024 12:35:31 +0000 schrieb WM in sci.math:
It is not guaranteed that n+1 exists for every n.

Date Sujet#  Auteur
12 Mar 25 * The existence of dark numbers proven by the thinned out harmonic series451WM
12 Mar 25 `* Re: The existence of dark numbers proven by the thinned out harmonic series450Alan Mackenzie
12 Mar 25  `* Re: The existence of dark numbers proven by the thinned out harmonic series449WM
12 Mar 25   `* The non-existence of "dark numbers" [was: The existence of dark numbers proven by the thinned out harmonic series]448Alan Mackenzie
12 Mar 25    +* Re: The non-existence of "dark numbers" [was: The existence of dark numbers proven by the thinned out harmonic series]444WM
12 Mar 25    i+* Re: The non-existence of "dark numbers"414Alan Mackenzie
12 Mar 25    ii`* Re: The non-existence of "dark numbers"413WM
12 Mar 25    ii `* Re: The non-existence of "dark numbers"412Alan Mackenzie
12 Mar 25    ii  +* Re: The non-existence of "dark numbers"6Moebius
13 Mar 25    ii  i+- Re: The non-existence of "dark numbers"1WM
13 Mar 25    ii  i`* Re: The non-existence of "dark numbers"4Alan Mackenzie
13 Mar 25    ii  i `* Re: The non-existence of "dark numbers"3Moebius
13 Mar 25    ii  i  `* Re: The non-existence of "dark numbers"2WM
13 Mar 25    ii  i   `- Re: The non-existence of "dark numbers"1joes
13 Mar 25    ii  +* Re: The non-existence of "dark numbers"401WM
13 Mar 25    ii  i+* Re: The non-existence of "dark numbers"399Alan Mackenzie
13 Mar 25    ii  ii+* Re: The non-existence of "dark numbers"397WM
13 Mar 25    ii  iii+* Re: The non-existence of "dark numbers"3joes
13 Mar 25    ii  iiii`* Re: The non-existence of "dark numbers"2WM
14 Mar 25    ii  iiii `- Re: The non-existence of "dark numbers"1joes
13 Mar 25    ii  iii`* Re: The non-existence of "dark numbers"393Alan Mackenzie
14 Mar 25    ii  iii `* Re: The non-existence of "dark numbers"392WM
14 Mar 25    ii  iii  +* Re: The non-existence of "dark numbers"7FromTheRafters
14 Mar 25    ii  iii  i`* Re: The non-existence of "dark numbers"6WM
14 Mar 25    ii  iii  i `* Re: The non-existence of "dark numbers"5FromTheRafters
14 Mar 25    ii  iii  i  `* Re: The non-existence of "dark numbers"4WM
15 Mar 25    ii  iii  i   `* Re: The non-existence of "dark numbers"3FromTheRafters
15 Mar 25    ii  iii  i    +- Re: The non-existence of "dark numbers" (thread too long, nothing in it)1Ross Finlayson
15 Mar 25    ii  iii  i    `- Re: The non-existence of "dark numbers"1WM
14 Mar 25    ii  iii  +* Re: The non-existence of "dark numbers"383Alan Mackenzie
14 Mar 25    ii  iii  i`* Re: The non-existence of "dark numbers"382WM
14 Mar 25    ii  iii  i +* Re: The non-existence of "dark numbers"380Alan Mackenzie
14 Mar 25    ii  iii  i i`* Re: The non-existence of "dark numbers"379WM
15 Mar 25    ii  iii  i i +* Re: The non-existence of "dark numbers"371Alan Mackenzie
15 Mar 25    ii  iii  i i i`* Re: The non-existence of "dark numbers"370WM
15 Mar 25    ii  iii  i i i +* Re: The non-existence of "dark numbers"4joes
15 Mar 25    ii  iii  i i i i`* Re: The non-existence of "dark numbers"3WM
15 Mar 25    ii  iii  i i i i `* Re: The non-existence of "dark numbers"2joes
15 Mar 25    ii  iii  i i i i  `- Re: The non-existence of "dark numbers"1WM
15 Mar 25    ii  iii  i i i +* Re: The non-existence of "dark numbers"362Alan Mackenzie
15 Mar 25    ii  iii  i i i i`* Re: The non-existence of "dark numbers"361WM
16 Mar 25    ii  iii  i i i i +* Re: The non-existence of "dark numbers"356Alan Mackenzie
16 Mar 25    ii  iii  i i i i i`* Re: The non-existence of "dark numbers"355WM
16 Mar 25    ii  iii  i i i i i +* Re: The non-existence of "dark numbers"268Jim Burns
16 Mar 25    ii  iii  i i i i i i`* Re: The non-existence of "dark numbers"267WM
16 Mar 25    ii  iii  i i i i i i `* Re: The non-existence of "dark numbers"266Jim Burns
16 Mar 25    ii  iii  i i i i i i  `* Re: The non-existence of "dark numbers"265WM
16 Mar 25    ii  iii  i i i i i i   `* Re: The non-existence of "dark numbers"264Jim Burns
16 Mar 25    ii  iii  i i i i i i    `* Re: The non-existence of "dark numbers"263WM
17 Mar 25    ii  iii  i i i i i i     `* Re: The non-existence of "dark numbers"262Jim Burns
17 Mar 25    ii  iii  i i i i i i      `* Re: The non-existence of "dark numbers"261WM
17 Mar 25    ii  iii  i i i i i i       `* Re: The non-existence of "dark numbers"260Jim Burns
17 Mar 25    ii  iii  i i i i i i        `* Re: The non-existence of "dark numbers"259WM
17 Mar 25    ii  iii  i i i i i i         `* Re: The non-existence of "dark numbers"258Jim Burns
18 Mar 25    ii  iii  i i i i i i          `* Re: The non-existence of "dark numbers"257WM
18 Mar 25    ii  iii  i i i i i i           `* Re: The non-existence of "dark numbers"256Jim Burns
18 Mar 25    ii  iii  i i i i i i            `* Re: The non-existence of "dark numbers"255WM
19 Mar 25    ii  iii  i i i i i i             `* Re: The non-existence of "dark numbers"254Jim Burns
19 Mar 25    ii  iii  i i i i i i              `* Re: The non-existence of "dark numbers"253WM
19 Mar 25    ii  iii  i i i i i i               `* Re: The non-existence of "dark numbers"252Jim Burns
20 Mar 25    ii  iii  i i i i i i                `* Re: The non-existence of "dark numbers"251WM
20 Mar 25    ii  iii  i i i i i i                 `* Re: The non-existence of "dark numbers"250Jim Burns
20 Mar 25    ii  iii  i i i i i i                  `* Re: The non-existence of "dark numbers"249WM
20 Mar 25    ii  iii  i i i i i i                   `* Re: The non-existence of "dark numbers"248Jim Burns
21 Mar 25    ii  iii  i i i i i i                    `* Re: The non-existence of "dark numbers"247WM
21 Mar 25    ii  iii  i i i i i i                     `* Re: The non-existence of "dark numbers"246Jim Burns
21 Mar 25    ii  iii  i i i i i i                      `* Re: The non-existence of "dark numbers"245WM
21 Mar 25    ii  iii  i i i i i i                       +* The reality of sets, on a scale of 1 to 10 [Was: The non-existence of "dark numbers"]183Alan Mackenzie
21 Mar 25    ii  iii  i i i i i i                       i+* Re: The reality of sets, on a scale of 1 to 10 [Was: The non-existence of "dark numbers"]40Moebius
21 Mar 25    ii  iii  i i i i i i                       ii+* Re: The reality of sets, on a scale of 1 to 10 [Was: The non-existence of "dark numbers"]37Moebius
21 Mar 25    ii  iii  i i i i i i                       iii+* Re: The reality of sets, on a scale of 1 to 10 [Was: The non-existence of "dark numbers"]2Moebius
21 Mar 25    ii  iii  i i i i i i                       iiii`- Re: The reality of sets, on a scale of 1 to 10 [Was: The non-existence of "dark numbers"]1Moebius
21 Mar 25    ii  iii  i i i i i i                       iii`* Re: The reality of sets, on a scale of 1 to 1034Alan Mackenzie
21 Mar 25    ii  iii  i i i i i i                       iii +* Re: The reality of sets, on a scale of 1 to 1032Moebius
22 Mar 25    ii  iii  i i i i i i                       iii i+- Re: The reality of sets, on a scale of 1 to 101Ross Finlayson
22 Mar 25    ii  iii  i i i i i i                       iii i+* Re: The reality of sets, on a scale of 1 to 1029Ralf Bader
22 Mar 25    ii  iii  i i i i i i                       iii ii`* Re: The reality of sets, on a scale of 1 to 1028Moebius
22 Mar 25    ii  iii  i i i i i i                       iii ii +* Re: The reality of sets, on a scale of 1 to 102Moebius
22 Mar 25    ii  iii  i i i i i i                       iii ii i`- Re: The reality of sets, on a scale of 1 to 101Moebius
23 Mar 25    ii  iii  i i i i i i                       iii ii `* Re: The reality of sets, on a scale of 1 to 1025Ross Finlayson
23 Mar 25    ii  iii  i i i i i i                       iii ii  `* Re: The reality of sets, on a scale of 1 to 1024Jim Burns
23 Mar 25    ii  iii  i i i i i i                       iii ii   `* Re: The reality of sets, on a scale of 1 to 10 (theory of theories)23Ross Finlayson
24 Mar 25    ii  iii  i i i i i i                       iii ii    +* Re: The reality of sets, on a scale of 1 to 10 (theory of theories)19Chris M. Thomasson
24 Mar 25    ii  iii  i i i i i i                       iii ii    i`* Re: The reality of sets, on a scale of 1 to 10 (theory of theories)18Jim Burns
24 Mar 25    ii  iii  i i i i i i                       iii ii    i +* Re: The reality of sets, on a scale of 1 to 10 (theory of theories)11Ross Finlayson
24 Mar 25    ii  iii  i i i i i i                       iii ii    i i`* Re: The reality of sets, on a scale of 1 to 10 (theory of theories)10Jim Burns
25 Mar 25    ii  iii  i i i i i i                       iii ii    i i `* Re: The reality of sets, on a scale of 1 to 10 (theory of theories)9Ross Finlayson
25 Mar 25    ii  iii  i i i i i i                       iii ii    i i  +* Re: The reality of sets, on a scale of 1 to 10 (theory of theories)3Jim Burns
25 Mar 25    ii  iii  i i i i i i                       iii ii    i i  i`* Re: The reality of sets, on a scale of 1 to 10 (theory of theories)2Ross Finlayson
25 Mar 25    ii  iii  i i i i i i                       iii ii    i i  i `- Re: The reality of sets, on a scale of 1 to 10 (theory of theories)1Jim Burns
25 Mar 25    ii  iii  i i i i i i                       iii ii    i i  `* Re: The reality of sets, on a scale of 1 to 10 (theory of theories)5Jim Burns
25 Mar 25    ii  iii  i i i i i i                       iii ii    i i   `* Re: The reality of sets, on a scale of 1 to 10 (theory of theories)4Ross Finlayson
25 Mar 25    ii  iii  i i i i i i                       iii ii    i i    `* Re: The reality of sets, on a scale of 1 to 10 (theory of theories)3Jim Burns
25 Mar 25    ii  iii  i i i i i i                       iii ii    i i     `* Re: The reality of sets, on a scale of 1 to 10 (theory of theories)2Ross Finlayson
25 Mar 25    ii  iii  i i i i i i                       iii ii    i i      `- Re: The reality of sets, on a scale of 1 to 10 (theory of theories)1Jim Burns
26 Mar 25    ii  iii  i i i i i i                       iii ii    i `* Re: The reality of sets, on a scale of 1 to 10 (theory of theories)6Chris M. Thomasson
27 Mar 25    ii  iii  i i i i i i                       iii ii    i  `* Re: The reality of sets, on a scale of 1 to 10 (theory of theories)5Jim Burns
27 Mar 25    ii  iii  i i i i i i                       iii ii    i   `* Re: The reality of sets, on a scale of 1 to 10 (theory of theories)4FromTheRafters
27 Mar 25    ii  iii  i i i i i i                       iii ii    i    +- Re: The reality of sets, on a scale of 1 to 10 (theory of theories)1Jim Burns
27 Mar 25    ii  iii  i i i i i i                       iii ii    i    `* Re: The reality of sets, on a scale of 1 to 10 (theory of theories)2Ross Finlayson
27 Mar 25    ii  iii  i i i i i i                       iii ii    i     `- Re: The reality of sets, on a scale of 1 to 10 (theory of theories)1Ross Finlayson
24 Mar 25    ii  iii  i i i i i i                       iii ii    `* Re: The reality of sets, on a scale of 1 to 10 (theory of theories)3Jim Burns
22 Mar 25    ii  iii  i i i i i i                       iii i`- Re: The reality of sets, on a scale of 1 to 101WM
22 Mar 25    ii  iii  i i i i i i                       iii `- Re: The reality of sets, on a scale of 1 to 101WM
22 Mar 25    ii  iii  i i i i i i                       ii`* Re: The reality of sets, on a scale of 1 to 10 [Was: The non-existence of "dark numbers"]2WM
22 Mar 25    ii  iii  i i i i i i                       i`* Re: The reality of sets, on a scale of 1 to 10 [Was: The non-existence of "dark numbers"]142WM
21 Mar 25    ii  iii  i i i i i i                       +* Re: The non-existence of "dark numbers"3FromTheRafters
22 Mar 25    ii  iii  i i i i i i                       `* Re: The non-existence of "dark numbers"58Jim Burns
16 Mar 25    ii  iii  i i i i i +* Re: The non-existence of "dark numbers"85Alan Mackenzie
16 Mar 25    ii  iii  i i i i i `- Re: The non-existence of "dark numbers"1joes
16 Mar 25    ii  iii  i i i i `* Re: The non-existence of "dark numbers"4joes
15 Mar 25    ii  iii  i i i `* Re: The non-existence of "dark numbers"3Chris M. Thomasson
15 Mar 25    ii  iii  i i `* Re: The non-existence of "dark numbers"7joes
14 Mar 25    ii  iii  i `- Re: The non-existence of "dark numbers"1joes
14 Mar 25    ii  iii  `- Re: The non-existence of "dark numbers"1joes
14 Mar 25    ii  ii`- Re: The non-existence of "dark numbers"1Chris M. Thomasson
13 Mar 25    ii  i`- Re: The non-existence of "dark numbers"1joes
13 Mar 25    ii  `* Re: The non-existence of "dark numbers"4Ben Bacarisse
12 Mar 25    i`* Re: The non-existence of "dark numbers" [was: The existence of dark numbers proven by the thinned out harmonic series]29Jim Burns
12 Mar 25    +* Re: The non-existence of "dark numbers" [was: The existence of dark numbers proven by the thinned out harmonic series]2FromTheRafters
12 Mar 25    `- Re: The non-existence of "dark numbers" [was: The existence of dark numbers proven by the thinned out harmonic series]1Jim Burns

Haut de la page

Les messages affichés proviennent d'usenet.

NewsPortal