Sujet : Re: Question to Euler.
De : dohduhdah (at) *nospam* yahoo.com (sobriquet)
Groupes : sci.mathDate : 27. May 2025, 03:54:26
Autres entêtes
Organisation : A noiseless patient Spider
Message-ID : <10139h3$2dvch$1@dont-email.me>
References : 1 2
User-Agent : Mozilla Thunderbird
Op 26/05/2025 om 22:56 schreef Python:
Le 26/05/2025 à 22:30, Richard Hachel a écrit :
Z=r(cosθ+i.sinθ), I understand.
Are you sure of that? I doubt it.
Z=e^iθ, I don't understand the expansion.
No doubt about that. What you wrote is incorrect, the correct expression is Z = r*e^(iθ)
Nice that you asked though.
Does anyone understand?
Sure.
sin(x) = sum_(k=0)^\infty ((-1)^k x^(1 + 2 k))/((1 + 2 k)!)
cos(x) = sum_(k=0)^\infty ((-1)^k x^(2 k))/((2 k)!)
e^x = sum_(k=0)^∞ x^k/(k!)
i^2 = -1
Hence:
e^(ix) = cos(x) + i*sin(x)
https://youtu.be/FFPXm-tuOt8?t=263We can kind of get a feeling for it by interactively observing the Taylor expansion (using the slider for N) to see how they approach the
transcendental functions with polynomials.
https://www.desmos.com/calculator/z2jjsuv5o2https://youtu.be/3geVAJvJM8c?t=701