Re: The mathematical Poincaré-Lorentz transformations

Liste des GroupesRevenir à sp relativity 
Sujet : Re: The mathematical Poincaré-Lorentz transformations
De : r.hachel (at) *nospam* liscati.fr.invalid (Richard Hachel)
Groupes : sci.physics.relativity
Date : 24. Sep 2024, 13:31:27
Autres entêtes
Organisation : Nemoweb
Message-ID : <humC4HOqwa8RgpL-9q5Vqw5iFsY@jntp>
References : 1 2 3 4
User-Agent : Nemo/1.0
Le 24/09/2024 à 13:04, "Paul.B.Andersen" a écrit :
Den 23.09.2024 20:02, skrev Richard Hachel:
Le 23/09/2024 à 19:51, "Paul.B.Andersen" a écrit :
Den 23.09.2024 14:51, skrev Richard Hachel:
Poincaré-Lorentz transformations transpose the present coordinates of a frame of reference R to the homologous coordinates in a frame of reference R'.
>
>
x=12
y=9
z=0
To=-15
>
>
If the frame R'(t',x',y',x') move along the x axis in
the frame R(t,x,z,y) at the speed 0.8c,
>
Then the event with the coordinates
  t = -15 y, x = 12 ly, y = 9 ly z = 0 ly in frame R
>
Will have the following coordinates in frame R'
  t' = - 41 y, x' = 40 ly, y' = 9 ly, z' = 0 ly
 Please pay attention to Hachel notations.
 I have made the transformation of the coordinates
of an event from R to R' as you asked for.
Yes, your answers are correct, proof that you already have a good grasp of Hachel's relativity.
I repeat that Hachel's relativity is very simple mathematically (college level) but that the concepts are sometimes repulsive to use for unprepared minds.
Too much beauty dazzles the eyes.
I am glad that you already have a good grasp of some concepts.
This is not the case for everyone.
 
Case closed.
Absolutely not
You didn't answer all the questions,
and I refuse to believe that you don't know what a sine, a cosine, and an angle α are.
R.H.
Date Sujet#  Auteur
23 Sep 24 * The mathematical Poincaré-Lorentz transformations21Richard Hachel
23 Sep 24 +* Re: The mathematical Poincaré-Lorentz transformations2Python
23 Sep 24 i`- Re: The mathematical Poincaré-Lorentz transformations1Richard Hachel
23 Sep 24 +* Re: The mathematical Poincaré-Lorentz transformations17Paul.B.Andersen
23 Sep 24 i`* Re: The mathematical Poincaré-Lorentz transformations16Richard Hachel
24 Sep 24 i `* Re: The mathematical Poincaré-Lorentz transformations15Paul.B.Andersen
24 Sep 24 i  +* Re: The mathematical Poincaré-Lorentz transformations3Maciej Wozniak
24 Sep 24 i  i`* Re: The mathematical Poincaré-Lorentz transformations2Richard Hachel
24 Sep 24 i  i `- Re: The mathematical Poincaré-Lorentz transformations1Maciej Wozniak
24 Sep 24 i  `* Re: The mathematical Poincaré-Lorentz transformations11Richard Hachel
24 Sep 24 i   `* Re: The mathematical Poincaré-Lorentz transformations10Python
24 Sep 24 i    +- Re: The mathematical Poincaré-Lorentz transformations1Python
24 Sep 24 i    `* Re: The mathematical Poincaré-Lorentz transformations8Richard Hachel
24 Sep 24 i     `* Re: The mathematical Poincaré-Lorentz transformations7Python
24 Sep 24 i      `* Re: The mathematical Poincaré-Lorentz transformations6Richard Hachel
24 Sep 24 i       +* Re: The mathematical Poincaré-Lorentz transformations2Python
24 Sep 24 i       i`- Re: The mathematical Poincaré-Lorentz transformations1Richard Hachel
25 Sep 24 i       `* Re: The mathematical Poincaré-Lorentz transformations3Thomas Heger
25 Sep 24 i        +- Re: The mathematical Poincaré-Lorentz transformations1Maciej Wozniak
25 Sep 24 i        `- Re: The mathematical Poincaré-Lorentz transformations1Richard Hachel
24 Sep 24 `- Re: The mathematical Poincaré-Lorentz transformations1Richard Hachel

Haut de la page

Les messages affichés proviennent d'usenet.

NewsPortal