Re: Incompleteness of Cantor's enumeration of the rational numbers

Liste des Groupes 
Sujet : Re: Incompleteness of Cantor's enumeration of the rational numbers
De : james.g.burns (at) *nospam* att.net (Jim Burns)
Groupes : sci.math
Date : 10. Nov 2024, 00:27:42
Autres entêtes
Organisation : A noiseless patient Spider
Message-ID : <16028da0-456b-47ad-8baa-7982a7cbdf10@att.net>
References : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
User-Agent : Mozilla Thunderbird
On 11/9/2024 6:45 AM, WM wrote:
On 08.11.2024 19:01, Jim Burns wrote:
On 11/8/2024 5:18 AM, WM wrote:

My understanding of mathematics and geometry
is that
reordering cannot increase the measure
(only reduce it by overlapping).
This is a basic axiom which
will certainly be agreed to by
everybody not conditioned by matheology.
>
By
"everybody not conditioned by matheology"
you mean
"everybody who hasn't thought much about infinity"
>
Everybody who believes that the intervals
I(n) = [n - 1/10, n + 1/10]
could grow in length or number
to cover the whole real axis
is a fool or worse.
Our sets do not change.
The set
   {[n-⅒,n+⅒]: n∈ℕ⁺}
with the midpoints at
   ⟨ 1, 2, 3, 4, 5, ... ⟩
does not _change_ to the set
   {[iₙ/jₙ-⅒,iₙ/jₙ+⅒]: n∈ℕ⁺}
with the midpoints at
   ⟨ 1/1, 1/2, 2/1, 1/3, 2/2, ... ⟩
----
Either
all instances of a 𝗰𝗹𝗮𝗶𝗺 about a set
are _only_ true or _only_ false
or
a set changes.
In the first case, with the not.changing sets,
a finite 𝘀𝗲𝗾𝘂𝗲𝗻𝗰𝗲 of 𝗰𝗹𝗮𝗶𝗺𝘀 which
  has only true.or.not.first.false 𝗰𝗹𝗮𝗶𝗺𝘀
has only true 𝗰𝗹𝗮𝗶𝗺𝘀.
Even though
we are _not_ physically able to check, for each number
  in an infinite set of numbers,
  that a 𝗰𝗹𝗮𝗶𝗺 is true about it,
we _are_ physically able to check, for each 𝗰𝗹𝗮𝗶𝗺
  in a finite 𝘀𝗲𝗾𝘂𝗲𝗻𝗰𝗲 of 𝗰𝗹𝗮𝗶𝗺𝘀,
  that it is not.first.false in that 𝘀𝗲𝗾𝘂𝗲𝗻𝗰𝗲.
Also, we already know some 𝗰𝗹𝗮𝗶𝗺𝘀 to be true.
Some finite 𝘀𝗲𝗾𝘂𝗲𝗻𝗰𝗲𝘀 of 𝗰𝗹𝗮𝗶𝗺𝘀 are
  known to be only true.or.not.first.false 𝗰𝗹𝗮𝗶𝗺𝘀,
and thus known to be only true 𝗰𝗹𝗮𝗶𝗺𝘀.
Un.physically.checkable numbers do not
  prevent us from knowing they're true 𝗰𝗹𝗮𝗶𝗺𝘀.
In the second case, with the changing sets,
who knows?
Perhaps something else could be done,
but not that.
In any case,
what.we.do is the first case, with
its not.changing sets and
its known.about infinity.
For that reason (and more, I suspect),
our sets do not change.

Everybody who believes that
the intervals
I(n) = [n - 1/10, n + 1/10]
could grow in length or number
to cover the whole real axis
is a fool or worse.
Our sets do not change.
Infinite sets can correspond to
other infinite sets which,
without much thought about infinity,
would seem to be a different "size".
Consider geometry.
Similar triangles have
corresponding sides in the same ratio.
Consider these points, line.segments, and triangles
in the ⟨x,y⟩.plane
A = ⟨0,-1⟩
B = ⟨0,0⟩
C = ⟨x,0⟩  with 0 < x < 1
D = ⟨1,0⟩
E = ⟨1,y⟩  with points A C E collinear.
△ABC and △EDC are similar
△ABC ∼ △EDC
μA͞B = 1
μB͞C = x
μE͞D = y
μD͞C = 1-x
Similar triangles.
μA͞B/μB͞C = μE͞D/μD͞C
1/x = y/(1-x)
y = 1/x - 1
x = 1/(y+1)
To each point C = ⟨x,0⟩ in (0,1)×{0}
there corresponds
exactly one point E = ⟨1,y⟩ in {1}×(0,+∞)
and vice versa.
(0,1)×{0} is not stretched over {1}×(0,+∞)
{1}×(0,+∞) is not shrunk to (0,1)×{0}
They both _are_
And their points correspond
by line A͞C͞E through point A.
Consider again the two sets of midpoints
⟨ 1, 2, 3, 4, 5, ... ⟩ and
⟨ 1/1, 1/2, 2/1, 1/3, 2/2, ... ⟩
They both _are_
And their points correspond
by i/j ↦ n = (i+j-1)(i+j-2)/2+i

Date Sujet#  Auteur
4 Nov 24 * Re: Incompleteness of Cantor's enumeration of the rational numbers501Jim Burns
4 Nov 24 `* Re: Incompleteness of Cantor's enumeration of the rational numbers500WM
4 Nov 24  `* Re: Incompleteness of Cantor's enumeration of the rational numbers499Jim Burns
4 Nov 24   +* Re: Incompleteness of Cantor's enumeration of the rational numbers474WM
5 Nov 24   i`* Re: Incompleteness of Cantor's enumeration of the rational numbers473Jim Burns
5 Nov 24   i +* Re: Incompleteness of Cantor's enumeration of the rational numbers4Jim Burns
5 Nov 24   i i`* Re: Incompleteness of Cantor's enumeration of the rational numbers (re-Vitali-ized)3Ross Finlayson
5 Nov 24   i i `* Re: Incompleteness of Cantor's enumeration of the rational numbers (re-Vitali-ized)2Ross Finlayson
6 Nov 24   i i  `- Re: Incompleteness of Cantor's enumeration of the rational numbers (re-Vitali-ized)1Chris M. Thomasson
6 Nov 24   i +* Re: Incompleteness of Cantor's enumeration of the rational numbers463WM
6 Nov 24   i i`* Re: Incompleteness of Cantor's enumeration of the rational numbers462Jim Burns
6 Nov 24   i i +* Re: Incompleteness of Cantor's enumeration of the rational numbers459WM
6 Nov 24   i i i`* Re: Incompleteness of Cantor's enumeration of the rational numbers458Jim Burns
6 Nov 24   i i i `* Re: Incompleteness of Cantor's enumeration of the rational numbers457WM
6 Nov 24   i i i  `* Re: Incompleteness of Cantor's enumeration of the rational numbers456Jim Burns
7 Nov 24   i i i   `* Re: Incompleteness of Cantor's enumeration of the rational numbers455WM
7 Nov 24   i i i    +* Re: Incompleteness of Cantor's enumeration of the rational numbers7Jim Burns
7 Nov 24   i i i    i`* Re: Incompleteness of Cantor's enumeration of the rational numbers6WM
7 Nov 24   i i i    i `* Re: Incompleteness of Cantor's enumeration of the rational numbers5Jim Burns
7 Nov 24   i i i    i  `* Re: Incompleteness of Cantor's enumeration of the rational numbers4WM
7 Nov 24   i i i    i   +* Re: Incompleteness of Cantor's enumeration of the rational numbers2Jim Burns
7 Nov 24   i i i    i   i`- Re: Incompleteness of Cantor's enumeration of the rational numbers1WM
7 Nov 24   i i i    i   `- Re: Incompleteness of Cantor's enumeration of the rational numbers1Chris M. Thomasson
7 Nov 24   i i i    `* Re: Incompleteness of Cantor's enumeration of the rational numbers447Jim Burns
7 Nov 24   i i i     `* Re: Incompleteness of Cantor's enumeration of the rational numbers446WM
8 Nov 24   i i i      `* Re: Incompleteness of Cantor's enumeration of the rational numbers445Jim Burns
8 Nov 24   i i i       `* Re: Incompleteness of Cantor's enumeration of the rational numbers444WM
8 Nov 24   i i i        +* Re: Incompleteness of Cantor's enumeration of the rational numbers13Richard Damon
8 Nov 24   i i i        i`* Re: Incompleteness of Cantor's enumeration of the rational numbers12WM
8 Nov 24   i i i        i +* Re: Incompleteness of Cantor's enumeration of the rational numbers2Richard Damon
9 Nov 24   i i i        i i`- Re: Incompleteness of Cantor's enumeration of the rational numbers1WM
8 Nov 24   i i i        i `* Re: Incompleteness of Cantor's enumeration of the rational numbers9joes
8 Nov 24   i i i        i  +* Re: Incompleteness of Cantor's enumeration of the rational numbers7Moebius
8 Nov 24   i i i        i  i`* Re: Incompleteness of Cantor's enumeration of the rational numbers6Moebius
9 Nov 24   i i i        i  i `* Re: Incompleteness of Cantor's enumeration of the rational numbers5WM
9 Nov 24   i i i        i  i  `* Re: Incompleteness of Cantor's enumeration of the rational numbers4Chris M. Thomasson
10 Nov 24   i i i        i  i   `* Re: Incompleteness of Cantor's enumeration of the rational numbers3Moebius
10 Nov 24   i i i        i  i    `* Re: Incompleteness of Cantor's enumeration of the rational numbers2WM
10 Nov 24   i i i        i  i     `- Re: Incompleteness of Cantor's enumeration of the rational numbers1Chris M. Thomasson
9 Nov 24   i i i        i  `- Re: Incompleteness of Cantor's enumeration of the rational numbers1WM
8 Nov 24   i i i        +* Re: Incompleteness of Cantor's enumeration of the rational numbers (doubling-spaces)2Ross Finlayson
8 Nov 24   i i i        i`- Re: Incompleteness of Cantor's enumeration of the rational numbers (doubling-spaces)1Ross Finlayson
8 Nov 24   i i i        `* Re: Incompleteness of Cantor's enumeration of the rational numbers428Jim Burns
9 Nov 24   i i i         `* Re: Incompleteness of Cantor's enumeration of the rational numbers427WM
10 Nov 24   i i i          `* Re: Incompleteness of Cantor's enumeration of the rational numbers426Jim Burns
10 Nov 24   i i i           `* Re: Incompleteness of Cantor's enumeration of the rational numbers425WM
10 Nov 24   i i i            +- Re: Incompleteness of Cantor's enumeration of the rational numbers (exponential)1Ross Finlayson
10 Nov 24   i i i            +* Re: Incompleteness of Cantor's enumeration of the rational numbers387Jim Burns
11 Nov 24   i i i            i`* Re: Incompleteness of Cantor's enumeration of the rational numbers386WM
11 Nov 24   i i i            i `* Re: Incompleteness of Cantor's enumeration of the rational numbers385Jim Burns
11 Nov 24   i i i            i  `* Re: Incompleteness of Cantor's enumeration of the rational numbers384WM
11 Nov 24   i i i            i   +* Re: Incompleteness of Cantor's enumeration of the rational numbers5FromTheRafters
12 Nov 24   i i i            i   i`* Re: Incompleteness of Cantor's enumeration of the rational numbers4WM
12 Nov 24   i i i            i   i +- Re: Incompleteness of Cantor's enumeration of the rational numbers1FromTheRafters
12 Nov 24   i i i            i   i `* Re: Incompleteness of Cantor's enumeration of the rational numbers2joes
12 Nov 24   i i i            i   i  `- Re: Incompleteness of Cantor's enumeration of the rational numbers1WM
12 Nov 24   i i i            i   +* Re: Incompleteness of Cantor's enumeration of the rational numbers2Jim Burns
12 Nov 24   i i i            i   i`- Re: Incompleteness of Cantor's enumeration of the rational numbers1WM
12 Nov 24   i i i            i   `* Re: Incompleteness of Cantor's enumeration of the rational numbers376Jim Burns
12 Nov 24   i i i            i    `* Re: Incompleteness of Cantor's enumeration of the rational numbers375WM
12 Nov 24   i i i            i     `* Re: Incompleteness of Cantor's enumeration of the rational numbers374Jim Burns
12 Nov 24   i i i            i      `* Re: Incompleteness of Cantor's enumeration of the rational numbers373WM
13 Nov 24   i i i            i       +* Re: Incompleteness of Cantor's enumeration of the rational numbers2Jim Burns
13 Nov 24   i i i            i       i`- Re: Incompleteness of Cantor's enumeration of the rational numbers1WM
13 Nov 24   i i i            i       `* Re: Incompleteness of Cantor's enumeration of the rational numbers370Jim Burns
13 Nov 24   i i i            i        `* Re: Incompleteness of Cantor's enumeration of the rational numbers369WM
13 Nov 24   i i i            i         `* Re: Incompleteness of Cantor's enumeration of the rational numbers368Jim Burns
13 Nov 24   i i i            i          `* Re: Incompleteness of Cantor's enumeration of the rational numbers367WM
14 Nov 24   i i i            i           `* Re: Incompleteness of Cantor's enumeration of the rational numbers366Jim Burns
14 Nov 24   i i i            i            +* Re: Incompleteness of Cantor's enumeration of the rational numbers6FromTheRafters
14 Nov 24   i i i            i            i`* Re: Incompleteness of Cantor's enumeration of the rational numbers5Jim Burns
14 Nov 24   i i i            i            i +* Re: Incompleteness of Cantor's enumeration of the rational numbers3Ross Finlayson
15 Nov 24   i i i            i            i i`* Re: Incompleteness of Cantor's enumeration of the rational numbers (research)2Ross Finlayson
15 Nov 24   i i i            i            i i `- Re: Incompleteness of Cantor's enumeration of the rational numbers (research)1Ross Finlayson
14 Nov 24   i i i            i            i `- Re: Incompleteness of Cantor's enumeration of the rational numbers1FromTheRafters
14 Nov 24   i i i            i            `* Re: Incompleteness of Cantor's enumeration of the rational numbers359WM
14 Nov 24   i i i            i             +* Re: Incompleteness of Cantor's enumeration of the rational numbers289Jim Burns
15 Nov 24   i i i            i             i`* Re: Incompleteness of Cantor's enumeration of the rational numbers288WM
15 Nov 24   i i i            i             i +* Re: Incompleteness of Cantor's enumeration of the rational numbers2joes
15 Nov 24   i i i            i             i i`- Re: Incompleteness of Cantor's enumeration of the rational numbers1WM
15 Nov 24   i i i            i             i `* Re: Incompleteness of Cantor's enumeration of the rational numbers285Jim Burns
15 Nov 24   i i i            i             i  `* Re: Incompleteness of Cantor's enumeration of the rational numbers284WM
15 Nov 24   i i i            i             i   `* Re: Incompleteness of Cantor's enumeration of the rational numbers283Chris M. Thomasson
16 Nov 24   i i i            i             i    +- Re: Incompleteness of Cantor's enumeration of the rational numbers1Moebius
16 Nov 24   i i i            i             i    +* Re: Incompleteness of Cantor's enumeration of the rational numbers278Moebius
16 Nov 24   i i i            i             i    i+- Re: Incompleteness of Cantor's enumeration of the rational numbers1Moebius
16 Nov 24   i i i            i             i    i+* Re: Incompleteness of Cantor's enumeration of the rational numbers2Moebius
16 Nov 24   i i i            i             i    ii`- Re: Incompleteness of Cantor's enumeration of the rational numbers1WM
16 Nov 24   i i i            i             i    i`* Re: Incompleteness of Cantor's enumeration of the rational numbers274Chris M. Thomasson
16 Nov 24   i i i            i             i    i `* Re: Incompleteness of Cantor's enumeration of the rational numbers273Chris M. Thomasson
16 Nov 24   i i i            i             i    i  +* Re: Incompleteness of Cantor's enumeration of the rational numbers2Chris M. Thomasson
16 Nov 24   i i i            i             i    i  i`- Re: Incompleteness of Cantor's enumeration of the rational numbers1Moebius
16 Nov 24   i i i            i             i    i  +* Re: Incompleteness of Cantor's enumeration of the rational numbers13FromTheRafters
16 Nov 24   i i i            i             i    i  i`* Re: Incompleteness of Cantor's enumeration of the rational numbers12Chris M. Thomasson
16 Nov 24   i i i            i             i    i  i +* Re: Incompleteness of Cantor's enumeration of the rational numbers2Moebius
16 Nov 24   i i i            i             i    i  i i`- Re: Incompleteness of Cantor's enumeration of the rational numbers1Moebius
17 Nov 24   i i i            i             i    i  i +* Re: Incompleteness of Cantor's enumeration of the rational numbers7Moebius
17 Nov 24   i i i            i             i    i  i i`* Re: Incompleteness of Cantor's enumeration of the rational numbers6Chris M. Thomasson
17 Nov 24   i i i            i             i    i  i i `* Re: Incompleteness of Cantor's enumeration of the rational numbers5Moebius
17 Nov 24   i i i            i             i    i  i i  +* Re: Incompleteness of Cantor's enumeration of the rational numbers2Moebius
17 Nov 24   i i i            i             i    i  i i  i`- Re: Incompleteness of Cantor's enumeration of the rational numbers1WM
17 Nov 24   i i i            i             i    i  i i  `* Re: Incompleteness of Cantor's enumeration of the rational numbers2Chris M. Thomasson
17 Nov 24   i i i            i             i    i  i `* Re: Incompleteness of Cantor's enumeration of the rational numbers2FromTheRafters
16 Nov 24   i i i            i             i    i  `* Re: Incompleteness of Cantor's enumeration of the rational numbers257Moebius
16 Nov 24   i i i            i             i    +- Re: Incompleteness of Cantor's enumeration of the rational numbers1Moebius
16 Nov 24   i i i            i             i    `* Re: Incompleteness of Cantor's enumeration of the rational numbers2Moebius
14 Nov 24   i i i            i             `* Re: Incompleteness of Cantor's enumeration of the rational numbers69Jim Burns
10 Nov 24   i i i            `* Re: Incompleteness of Cantor's enumeration of the rational numbers36Chris M. Thomasson
6 Nov 24   i i `* Re: Incompleteness of Cantor's enumeration of the rational numbers (opinions)2Ross Finlayson
6 Nov 24   i `* Re: Incompleteness of Cantor's enumeration of the rational numbers5WM
4 Nov 24   `* Re: Incompleteness of Cantor's enumeration of the rational numbers24Chris M. Thomasson

Haut de la page

Les messages affichés proviennent d'usenet.

NewsPortal