Sujet : Re: Incompleteness of Cantor's enumeration of the rational numbers
De : james.g.burns (at) *nospam* att.net (Jim Burns)
Groupes : sci.mathDate : 13. Nov 2024, 10:08:58
Autres entêtes
Organisation : A noiseless patient Spider
Message-ID : <65febd06-662b-4fa4-9aa8-f7353a79a110@att.net>
References : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
User-Agent : Mozilla Thunderbird
On 11/12/2024 4:38 PM, WM wrote:
On 12.11.2024 20:01, Jim Burns wrote:
These intervals
{[n-⅒,n+⅒]: n∈ℕ⁺}
cover all naturals ℕ⁺ and
do not cover all fractions ℕ⁺/ℕ⁺
>
Right.
>
But the rationals are more in the sense that
they include all naturals and 1/2.
>
These intervals
{[i/j-⅒,i/j+⅒]: i/j∈ℕ⁺/ℕ⁺}
cover all fractions ℕ⁺/ℕ⁺
>
But these are more intervals.
Are there more, though?
Or are there fewer?
i/j ↦ (i+j-1)(i+j-1)+2⋅i
⟨ 1/1 1/2 2/1 1/3 2/2 3/1 1/4 2/3 ... ⟩
↦
⟨ 2 4 6 8 10 12 14 16 ... ⟩
Or do infinite sets have different rules
than finite sets do?