Re: The philosophy of logic reformulates existing ideas on a new basis --- infallibly correct

Liste des GroupesRevenir à theory 
Sujet : Re: The philosophy of logic reformulates existing ideas on a new basis --- infallibly correct
De : noreply (at) *nospam* example.org (joes)
Groupes : comp.theory sci.logic
Date : 10. Nov 2024, 21:39:42
Autres entêtes
Organisation : i2pn2 (i2pn.org)
Message-ID : <5b139a59da876d152416698f9a3da421af577560@i2pn2.org>
References : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
User-Agent : Pan/0.145 (Duplicitous mercenary valetism; d7e168a git.gnome.org/pan2)
Am Sun, 10 Nov 2024 14:07:44 -0600 schrieb olcott:
On 11/10/2024 1:13 PM, Richard Damon wrote:
On 11/10/24 10:11 AM, olcott wrote:
On 11/10/2024 4:03 AM, Alan Mackenzie wrote:
In comp.theory olcott <polcott333@gmail.com> wrote:
On 11/9/2024 4:28 PM, Alan Mackenzie wrote:
olcott <polcott333@gmail.com> wrote:
On 11/9/2024 3:45 PM, Alan Mackenzie wrote:

Sorry, but until you actually and formally fully define your logic
system, you can't start using it.
When C is a necessary consequence of the Haskell Curry elementary
theorems of L (Thus stipulated to be true in L) then and only then is C
is True in L.
This simple change does get rid of incompleteness because Incomplete(L)
is superseded and replaced by Incorrect(L,x).
I still can’t see how this makes ~C provable.

--
Am Sat, 20 Jul 2024 12:35:31 +0000 schrieb WM in sci.math:
It is not guaranteed that n+1 exists for every n.

Date Sujet#  Auteur
7 Jul 25 o 

Haut de la page

Les messages affichés proviennent d'usenet.

NewsPortal