Liste des Groupes | Revenir à theory |
On 5/15/24 10:17 PM, olcott wrote:*YOU SKIP SO MANY POINTS, THAT IS NOT ALLOWED WITH THE SOCRATIC METHOD*On 5/15/2024 9:07 PM, Richard Damon wrote:No, YOU get stuck when you can't figure out how to make True(L, p) with p defined in L as ~True(L, p) work. If it IS false, then the resulting comclusion is that True(L, true) is false, whicn means your system is broken.On 5/15/24 9:57 PM, olcott wrote:>On 5/13/2024 9:31 PM, Richard Damon wrote:>On 5/13/24 10:03 PM, olcott wrote:>>>
Remember, p defined as ~True(L, p) is BY DEFINITION a truth bearer, as True must return a Truth Value for all inputs, and ~ a truth valus is always the other truth value.
>
Can a sequence of true preserving operations applied to expressions
that are stipulated to be true derive p?
On 5/15/2024 8:39 PM, Richard Damon wrote:
> Which has NOTHING to do with the problem with True(L, p)
> being true when p is defined in L as ~True(L, p)
>
*YOU ALREADY AGREED THAT True(L, p) IS FALSE*
No, I said that because there is not path to p, it would need to be false, but that was based on the assumption that it could exist.
>>>>
No, so True(L, p) is false
and thus ~True(L, p) is true.
>>>
Can a sequence of true preserving operations applied to expressions
that are stipulated to be true derive ~p?
On 5/15/2024 7:52 PM, Richard Damon wrote:
> Which has NOTHING to do with the above,
> as we never refered to False(L,p).
>
*YOU ALREADY AGREED THAT false(L, p) IS FALSE*
Right, but that has nothing to do with the problem with True(L, p) being false, because, since p in L is ~True(L, p) so that make True(L, ~false) which is True(L, true) false, which is incorrrect.
>>>>
No, so False(L, p) is false,
>
Please try and keep these two thoughts together at the same time
*I need to make another point that depends on both of them*
>
*YOU ALREADY AGREED THAT True(L, p) IS FALSE*
*YOU ALREADY AGREED THAT false(L, p) IS FALSE*
>
>
right, by your definitions, True(L, p) is False, but that means that True(L, true) is false, so your system is broken.
>
You understand that True(English, "a fish") is false
and you understand that False(English, "a fish") is false
and you understand this means that "a fish" is neither True
nor false in English.
>
You understand that the actual Liar Paradox is neither true
nor false *THIS IS MUCH MUCH BETTER THAN MOST PEOPLE: Good Job*
>
True(English, "This sentence is not true") is false
False(English, "This sentence is not true") is false
Is saying the same thing that you already know.
>
You get stuck when we formalize: "This sentence is not true"
as "p defined as ~True(L, p)", yet the formalized sentence has
the exact same semantics as the English one.
>
Les messages affichés proviennent d'usenet.