Liste des Groupes | Revenir à p relativity |
What you called above "equal distances" is equality of spacialObviously. Et tu veux prouver quoi? R.H.
part of two trajectories. This is a frame dependent property.
Date | Sujet | # | Auteur | |
19 Jul 24 | tau egality in relalivity | 17 | Richard Hachel | |
20 Jul 24 | Re: tau egality in relalivity | 16 | Python | |
20 Jul 24 | Re: tau egality in relalivity | 15 | Richard Hachel | |
20 Jul 24 | Re: tau egality in relalivity | 14 | Python | |
20 Jul 24 | Re: tau egality in relalivity | 6 | Maciej Wozniak | |
20 Jul 24 | Re: tau egality in relalivity | 5 | Python | |
20 Jul 24 | Re: tau egality in relalivity | 4 | Maciej Wozniak | |
20 Jul 24 | Re: tau egality in relalivity | 3 | Python | |
20 Jul 24 | Re: tau egality in relalivity | 2 | Maciej Wozniak | |
20 Jul 24 | Re: tau egality in relalivity | 1 | Richard Hachel | |
20 Jul 24 | Re: tau egality in relalivity | 7 | Richard Hachel | |
20 Jul 24 | Re: tau egality in relalivity | 6 | Python | |
20 Jul 24 | Re: tau egality in relalivity | 2 | Maciej Wozniak | |
20 Jul 24 | Re: tau egality in relalivity | 1 | Python | |
21 Jul 24 | Re: tau egality in relalivity | 3 | Richard Hachel | |
21 Jul 24 | Re: tau egality in relalivity | 2 | Python | |
21 Jul 24 | Re: tau egality in relalivity | 1 | Maciej Wozniak |
Les messages affichés proviennent d'usenet.