Re: The mathematical Poincaré-Lorentz transformations

Liste des GroupesRevenir à p relativity 
Sujet : Re: The mathematical Poincaré-Lorentz transformations
De : mlwozniak (at) *nospam* wp.pl (Maciej Wozniak)
Groupes : sci.physics.relativity
Date : 24. Sep 2024, 14:37:40
Autres entêtes
Organisation : NewsDemon - www.newsdemon.com
Message-ID : <17f831a9687a92af$2191$822353$c2565adb@news.newsdemon.com>
References : 1 2 3 4 5 6
User-Agent : Mozilla Thunderbird
W dniu 24.09.2024 o 15:20, Richard Hachel pisze:
Le 24/09/2024 à 14:02, Maciej Wozniak a écrit :
W dniu 24.09.2024 o 13:06, Paul.B.Andersen pisze:
Den 23.09.2024 20:02, skrev Richard Hachel:
Le 23/09/2024 à 19:51, "Paul.B.Andersen" a écrit :
Den 23.09.2024 14:51, skrev Richard Hachel:
Poincaré-Lorentz transformations transpose the present coordinates of a frame of reference R to the homologous coordinates in a frame of reference R'.
>
>
x=12
y=9
z=0
To=-15
>
>
If the frame R'(t',x',y',x') move along the x axis in
the frame R(t,x,z,y) at the speed 0.8c,
>
Then the event with the coordinates
  t = -15 y, x = 12 ly, y = 9 ly z = 0 ly in frame R
>
Will have the following coordinates in frame R'
  t' = - 41 y, x' = 40 ly, y' = 9 ly, z' = 0 ly
>
Please pay attention to Hachel notations.
>
I have made the transformation of the coordinates
of an event from R to R' as you asked for.
>
>
Stella and Terrence, Bob and Alice may produce
their coordinate sets magically, it's easy
in fabricated tales. In the real world -
generating a reliable set of coordinates
is a serious task. We don't really have even
1 (one) real set of coordinates valid for
your precious transformations.
 This is not magic, nor invented tales.
Generating a reliable set of coordinates
is really a serious task. Forcing everyone
to create and maintain his own - was always
a complete absurd, and not only for that
reason.
Still, much more is possible and easy in
gedanken/fabricated tales.

The theory of relativity is today an obvious theory
The mumble of the idiot was not even consistent.

Date Sujet#  Auteur
23 Sep 24 * The mathematical Poincaré-Lorentz transformations21Richard Hachel
23 Sep 24 +* Re: The mathematical Poincaré-Lorentz transformations2Python
23 Sep 24 i`- Re: The mathematical Poincaré-Lorentz transformations1Richard Hachel
23 Sep 24 +* Re: The mathematical Poincaré-Lorentz transformations17Paul.B.Andersen
23 Sep 24 i`* Re: The mathematical Poincaré-Lorentz transformations16Richard Hachel
24 Sep 24 i `* Re: The mathematical Poincaré-Lorentz transformations15Paul.B.Andersen
24 Sep 24 i  +* Re: The mathematical Poincaré-Lorentz transformations3Maciej Wozniak
24 Sep 24 i  i`* Re: The mathematical Poincaré-Lorentz transformations2Richard Hachel
24 Sep 24 i  i `- Re: The mathematical Poincaré-Lorentz transformations1Maciej Wozniak
24 Sep 24 i  `* Re: The mathematical Poincaré-Lorentz transformations11Richard Hachel
24 Sep 24 i   `* Re: The mathematical Poincaré-Lorentz transformations10Python
24 Sep 24 i    +- Re: The mathematical Poincaré-Lorentz transformations1Python
24 Sep 24 i    `* Re: The mathematical Poincaré-Lorentz transformations8Richard Hachel
24 Sep 24 i     `* Re: The mathematical Poincaré-Lorentz transformations7Python
24 Sep 24 i      `* Re: The mathematical Poincaré-Lorentz transformations6Richard Hachel
24 Sep 24 i       +* Re: The mathematical Poincaré-Lorentz transformations2Python
24 Sep 24 i       i`- Re: The mathematical Poincaré-Lorentz transformations1Richard Hachel
25 Sep 24 i       `* Re: The mathematical Poincaré-Lorentz transformations3Thomas Heger
25 Sep 24 i        +- Re: The mathematical Poincaré-Lorentz transformations1Maciej Wozniak
25 Sep 24 i        `- Re: The mathematical Poincaré-Lorentz transformations1Richard Hachel
24 Sep 24 `- Re: The mathematical Poincaré-Lorentz transformations1Richard Hachel

Haut de la page

Les messages affichés proviennent d'usenet.

NewsPortal