Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)

Liste des GroupesRevenir à s logic 
Sujet : Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)
De : noreply (at) *nospam* example.org (joes)
Groupes : sci.math
Date : 16. Dec 2024, 18:25:23
Autres entêtes
Organisation : i2pn2 (i2pn.org)
Message-ID : <e08128aa5aa13493ccc0f9a4e0473fdc1515cb24@i2pn2.org>
References : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
User-Agent : Pan/0.145 (Duplicitous mercenary valetism; d7e168a git.gnome.org/pan2)
Am Mon, 16 Dec 2024 17:49:20 +0100 schrieb WM:
On 16.12.2024 16:40, joes wrote:
Am Mon, 16 Dec 2024 14:59:27 +0100 schrieb WM:
On 16.12.2024 12:55, joes wrote:
Am Mon, 16 Dec 2024 09:30:18 +0100 schrieb WM:
>
All intervals do it because there is no n outside of all intervals
[1, n]. My proof applies all intervals.
It does not. It applies to every single finite „interval”,
What element is not covered by all intervals that I use?
but not to the whole N.
You do not cover N, only finite parts.
What do I miss to cover?
Inf.many numbers for every n. N is infinite.

--
Am Sat, 20 Jul 2024 12:35:31 +0000 schrieb WM in sci.math:
It is not guaranteed that n+1 exists for every n.

Date Sujet#  Auteur
27 May 25 o 

Haut de la page

Les messages affichés proviennent d'usenet.

NewsPortal