Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)

Liste des GroupesRevenir à s math 
Sujet : Re: Incompleteness of Cantor's enumeration of the rational numbers (extra-ordinary)
De : noreply (at) *nospam* example.org (joes)
Groupes : sci.logic
Date : 12. Dec 2024, 14:59:02
Autres entêtes
Organisation : i2pn2 (i2pn.org)
Message-ID : <62d0f2153c21d03dd687f611484b4a6dc91e00d5@i2pn2.org>
References : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
User-Agent : Pan/0.145 (Duplicitous mercenary valetism; d7e168a git.gnome.org/pan2)
Am Tue, 10 Dec 2024 18:01:04 +0100 schrieb WM:
On 10.12.2024 13:19, Richard Damon wrote:
 
The pairing is between TWO sets, not the members of a set with itself.
 
The pairing is between the elements. Otherwise you could pair R and Q by
simply claiming it.
"The infinite sequence thus defined has the peculiar property to contain
the positive rational numbers completely, and each of them only once at
a determined place." [Cantor] Note the numbers, not the set.
What Richard meant: do not confuse the set being mapped with the one being
mapped onto.

--
Am Sat, 20 Jul 2024 12:35:31 +0000 schrieb WM in sci.math:
It is not guaranteed that n+1 exists for every n.

Date Sujet#  Auteur
7 Jul 25 o 

Haut de la page

Les messages affichés proviennent d'usenet.

NewsPortal