Sujet : Re: Replacement of Cardinality
De : invalid (at) *nospam* example.invalid (Moebius)
Groupes : sci.logic sci.mathDate : 05. Aug 2024, 09:12:34
Autres entêtes
Organisation : A noiseless patient Spider
Message-ID : <v8q1hi$is14$1@dont-email.me>
References : 1 2 3 4 5 6 7 8 9 10 11 12 13 14
User-Agent : Mozilla Thunderbird
Am 05.08.2024 um 08:44 schrieb Chris M. Thomasson:
On 8/4/2024 5:24 PM, Moebius wrote:
Am 05.08.2024 um 01:07 schrieb Chris M. Thomasson:
[...] there is no smallest [unit fraction]...
>
Yeah.
>
Proof: If s is a unit fraction then 1/(1/s + 1) is a unit fraction which is smaller than s (for each and every s).
Yup.
always_smaller(i) = (1/(i + 1))
So, starting at 1/1:
always_smaller(1) = 1/2
always_smaller(2) = 1/3
always_smaller(3) = 1/4
always_smaller(4) = 1/5
...
Let's try
next_unit_fraction(u) = (1/(1/u + 1))
So, starting with 1/1:
next_unit_fraction(1/1) = 1/2
next_unit_fraction(1/2) = 1/3
next_unit_fraction(1/3) = 1/4
next_unit_fraction(1/4) = 1/5
:
:-P
Though in Mückenland we will have
next_unit_fraction(1/n) = NaN
for some natural number n, I guess.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Btw. we might implement this function (in Python) the followimg way:
def next_unit_fraction(n, m):
return (1, m//n + 1)
Testcode:
(n, m) = (1, 1); print((n, m))
(n, m) = next_unit_fraction(n, m); print((n, m))
(n, m) = next_unit_fraction(n, m); print((n, m))
(n, m) = next_unit_fraction(n, m); print((n, m))
(n, m) = next_unit_fraction(n, m); print((n, m))
Output:
(1, 1)
(1, 2)
(1, 3)
(1, 4)
(1, 5)
Works! :-P