Sujet : Re: Replacement of Cardinality
De : invalid (at) *nospam* example.invalid (Moebius)
Groupes : sci.logic sci.mathDate : 06. Aug 2024, 22:02:54
Autres entêtes
Organisation : A noiseless patient Spider
Message-ID : <v8u31u$1rds2$1@dont-email.me>
References : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
User-Agent : Mozilla Thunderbird
Am 06.08.2024 um 22:21 schrieb Chris M. Thomasson:
On 8/6/2024 6:33 AM, Moebius wrote:
Am 06.08.2024 um 04:24 schrieb Chris M. Thomasson:
>
There are infinite[ly many] even[ numbers] and
there are infinite[ly many] odd[ numbers].
>
On the other hand, some even numbers are odd. :-)
;^D 666?
Ahh zero. I think its even... ;^)
1, 2, 3, 4, ...
odd, even, odd, even, ...
So, the pattern:
-2, -1, 0, 1, 2
even, odd, (even), odd, even
Yes. An integer z is even, iff there is am integer k such that z = 2k.
Clearly for z = 0 there is an integer k (namely 0) such that z = 2k.
In other words, an integer z is even if it can be deviede by 2 "without a remainder =/= 0".
Clearly 0 can be devided by 2 "without a remainder =/= 0": 0 / 2 = 0.
So 0 is an odd even number? :-)