Sujet : Re: Replacement of Cardinality
De : chris.m.thomasson.1 (at) *nospam* gmail.com (Chris M. Thomasson)
Groupes : sci.logic sci.mathDate : 14. Aug 2024, 20:02:43
Autres entêtes
Organisation : A noiseless patient Spider
Message-ID : <v9iv0j$iiv3$2@dont-email.me>
References : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
User-Agent : Mozilla Thunderbird
On 8/13/2024 1:29 PM, Moebius wrote:
Am 13.08.2024 um 21:25 schrieb Chris M. Thomasson:
It depends on context. Are we going from 1/1 all the way down, or from 0 all the way up to 1/1.
Again, 1/1 is the first term in the sequence (1/1, 1/2, 1/3, ...), but it's the largest/last unit fraction in respect to < (as defined on IR, and hence on the unit fractions).
... < 1/3 < 1/2 < 1/1.
0 is not a unit fraction, which means there is no smallest one... Fair enough?
Right. There is no smallest unit fraction (in respect to < as defined on the IR).
Proof: If u is a unit fraction, 1/(1/u + 1) is a smaller one.
Using symbols: Au e {1/n : n e IN}: 1/(1/u + 1) e {1/n : n e IN} & 1/(1/u + 1) < u.
Or with the definition:
1/IN := {1/n : n e IN}
just:
Au e 1/IN: 1/(1/u + 1) e 1/IN & 1/(1/u + 1) < u.
This implies:
Au e 1/IN: Eu' e 1/IN: u' < u.
"For each and every unit fraction, there is a smaller one."
Thanks. :^)